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THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS,
WITH APPLICATION TO THE TWO-BODY PROBLEM*

M. P. CALVO{ AND J. M. SANZ-SERNA¥

Abstract. The authors develop and test variable step symplectic Runge-Kutta-Nystrém algorithms for
the integration of Hamiltonian systems of ordinary differential equations. Numerical experiments suggest
that, for symplectic formulae, moving from constant to variable stepsizes results in a marked decrease in
efficiency. On the other hand, symplectic formulae with constant stepsizes may outperform available standard
(nonsymplectic) variable-step codes. For the model situation consisting in the long-time integration of the
two-body problem, our experimental findings are backed by theoretical analysis.
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1. Introduction. In mechanics, optics, chemistry, etc., situations where dissipation
does not play a significant role may be modelled by means of Hamiltonian systems of
ordinary differential equations (ODEs) or partial differential equations (PDEs) [2].
Hamiltonian systems of ODEs are of the form

(1.1) p'=—0H/3q", ¢'=0H/op', 1=I=d,

where the integer d is the number of degrees of freedom, the Hamiltonian H = H(p, q) =
H(p',...,p% q',...,q") is a sufficiently smooth, real function of 2d real variables,
and a dot represents differentiation with respect to ¢ (time). There has been much
recent interest in the numerical integration of (1.1) by means of so-called symplectic
or canonical integrators, starting with the work of Ruth [12], Feng [7], and Channell
and Scovel [4]. An extensive list of references can be found in the survey [14].

In order to explain in simple terms the meaning and relevance of symplecticness,
it is advisable to consider first the question of how to tell, from the knowledge of the
solutions of a system of ODEs, whether the system is of Hamiltonian form or otherwise.
More precisely, let & be an autonomous system of ODE:s for the dependent variables
(p, q), and let us introduce the R*?-valued function ¢,(p,, p,) such that, for fixed Po
and q, and varying ¢, (p(?), q(1)) = ¢,(pg, qo) is the solution of & with initial condition
p(0) =p,, q(0) =q,. If we now see ¢ as a parameter and p,, q, as variables, ¢,(po, qo)
defines a transformation in the space R*? (the phase space). This transformation is
the flow of the differential system . If we were given ¢, and at the same time & were
concealed from us, could we tell whether ¥ is a Hamiltonian system or otherwise?
The answer to this question is affirmative. The system & is Hamiltonian if and only if,
for each t, ¢, is a symplectic transformation. Now a transformation J in phase space
is said to be symplectic [2] if for any bounded two-dimensional surface D in phase
space, the sum of the two-dimensional (signed) areas of the d projections of D onto
the planes (p’, q") is the same as the sum of the two-dimensional (signed) areas of
the d projections of J(D) onto the planes (p’, g'). Thus the symplectic character of

* Received by the editors December 18, 1991; accepted for publication (in revised form) April 30, 1992.
This research was supported by Junta de Castilla y Leén under project 1031-89 and by Direccién General
de Investigacion Cientifica y Técnica under project PB89-0351.

T Departamento de Matematica Aplicada y Computacién, Facultad de Ciencias, Universidad de Val-
ladolid, Valladolid, Spain (Maripaz@cpd.uva.es and sanzserna@cpd.uva.es).

936



PARALLEL COMPACT FFTs FOR REAL SEQUENCES 935

[16] D. W. WALKER, P. H. WORLEY, AND J. B. DRAKE, Parallelizing the spectral transform method —Fart
II, TM-11855, Oak Ridge National Laboratory, 1991; Concurrency: Practice and Experience,
submitted.

[17] Partial results were presented as a contributed paper at the SIAM Conf. on Parallel Processing for
Scientific Computing, Houston, TX, March 25-27, 1991. Similar algorithms are being developed
by R. Sweet, private communication.



VARIABLE-STEP SYMPLECTIC INTEGRATION 937

the flow is the hallmark of Hamiltonian systems. Hamiltonian problems have many
specific features not shared by other systems of differential equations. All such specific
features (absence of attractors, recurrence, etc.) directly derive from the symplecticness
of th= corresponding flow [2].

A one-step numerical method used with steplength h defines a transformation in
phase space ¥, (po, qo) that advances the solution h units of time, starting from (po, qo)-
Of course, ¥,(po, qo) is an approximation to ¢,(pe, qo), and the numerical method
approximates ¢,, = ¢, by iterating n times ;. For Hamiltonian problems integrated
by classical methods, such as explicit Runge-Kutta methods, the transformation y,
turns out to be nonsymplectic. Then the numerical method misses the important specific
features associated with symplectic transformations. However, there are symplectic
methods for which ¢, is guaranteed to be symplectic for Hamiltonian problems.

Numerical experiments have shown that for Hamiltonian problems, symplectic
integrators may well be an improvement over their nonsymplectic counterparts.
However, the development of symplectic methods has so far been confined to constant
stepsize formulae and, accordingly, numerical tests have used as reference algorithms
constant stepsize implementations of classical methods. Such implementations are, by
modern numerical ODE standards, very naive, and the question arises of whether, for
Hamiltonian problems, a symplectic method with constant stepsizes, may actually be
more efficient than a modern variable-step code. Before we carried out the experiments
reported in this paper, we felt that the answer to that question would be no. On the
other hand, we suspected that for Hamiltonian problems, variable stepsize symplectic
algorithms would improve on standard variable stepsize algorithms. Accordingly, we
decided to develop variable stepsize symplectic algorithms.

In this paper we report on our experience with the construction and assessment
of variable-step, symplectic, explicit Runge- Kutta- Nystrém algorithms. We used Runge-
Kutta-Nystrom (RKN) methods rather than Runge-Kutta methods because all sym-
plectic Runge-Kutta formulae are implicit [13]. It appears that both our guesses above
were wrong: constant stepsize symplectic methods may beat standard variable stepsize
codes, but variable stepsize symplectic codes are not more advantageous than standard
variable stepsize codes.

Section 2 is devoted to the construction of the symplectic RKN code. The results
of the numerical experiments are presented in § 3, where we use as a test problem the
well-known two-body (Kepler) problem. In § 4 we analyze our experimental findings. -
In particular, we provide a complete theoretical study of the performance of general
one-step numerical methods in the integration of the two-body problem. Finally, in
§ 5, we present our conclusions.

2. Construction of a symplectic RKN code.
2.1. RKN methods. We restrict our attention to systems of the special form

(i.e., to second-order systems 4 = f(q)). If f is the gradient of a scalar function —V(q),
then (2.1) is a Hamiltonian system with

H=H(p,q=T(p)+V(g, T(p)=2:p"p.

In mechanics, the q variables represent Lagrangian coordinates, the p variables the
corresponding momenta, f the forces, T is the kinetic energy, V the potential energy,
and H the total energy [2].
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An explicit RKN method for (2.1) takes the form [5], [8]
Q. =q,+hyp,+ h’ > aijf(Qj)s

Jj<i

(22) P =Path 3 BIQ),

s

Qn+1 =9, hp,+ h? Z B:f(Q,),

i=1

where we assume, unless otherwise stated, that the following well-known condition
[5], [8] holds:

(2.3) Bi=b(1-7v,), 1=i=s

As in [5], we consider first same as last (FSAL) methods, i.e., methods with
(2.4a) =0, y=1,
(2.4b) a;=B;, 1sj=s-1.

Note that (2.4a) implies, via (2.3), that 8, =0, and then the last stage Q, of the current
step coincides with q,,.,, which, in turn, is the first stage of the next step. Therefore,
a step of an FSAL s-stage method requires only s —1 evaluations of f.

The method (2.2) is symplectic if [21], [11], [3], [14]

(2.5) a; = b;(v; — ), i>]

For symplectic methods with s stages, we have s coefficients b; and s coefficients v;
as free parameters; the coefficients B; and a; are determined by (2.3) and (2.5),
respectively. On the other hand (2.3), (2.4a), and (2.5) imply (2.4b), so that a
symplectic FSAL method has s coefficients b, and s —2 coefficients y;,,2=i=s—1, as
free parameters.

2.2. Derivation of a fourth-order, symplectic, FSAL RKN method. To construct a
variable-step symplectic code, we decided to begin with a fourth-order formula. While
higher-order formulae are expected to be more efficient, they are also more difficult
to construct. For a method (2.2)-(2.3) to have order four, the coefficients should satisfy
seven order conditions [8]. However, for symplectic methods, not all order conditions
are independent [1], {3], [14], [15] and, in fact, it turns out [3] that it is sufficient to
impose only six of them. For FSAL symplectic methods, four stages furnish six free
coefficients, and after imposing order four, no room is left for “tuning” the formula.
We then settle for five-stage FSAL symplectic methods, for which a two-parameter
family of order-four methods exists. Following a standard practice (see [5] and [6])
we choose among the members of this family the method with “smallest” truncation
error.

For smooth problems the p-truncation and g-truncation errors of an RKN method,
respectively, possess Taylor expansions of the form [5], [8]

o0

(2.6a) Z ) cj((i+1)Fj(_i+1)

and

(2.6b) Z hi+lz Cg:+1)F;(i),
= k
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where the Fj(-” are the elementary differentials that only depend on the problem (2.1)
being integrated, and the ¢/“*" and ¢{/*" are polynomials in the method coefficients
@i, ¥i» Bi, b;. In (2.6a), the sum in j is extended to all special Nystrom trees with i+1
nodes, while in (2.6b), the sum in k is extended to all special Nystrom trees with i
nodes. For fourth-order methods, ¢/'”’ and ¢’ vanish for i =4 and we try to minimize

¢/® and ¢{”. We proceed as follows. Let us denote by ¢’ and ¢'”, respectively, the

vectors with components ¢} and c{”, and set

@) A=), AT = ).

(The norm is the standard Euclidean norm.) We consider ¢ = (A’®)*+(A®)? as a
function of the eight free coefficients y;,2=i=4, and b;, I=j =5, and use the NAG
subroutine EO4UCF to minimize ¢ subject to the six equality constraints that impose
order four and subject to bounds —1.5=1v, b;=1.5. Of course, the minimization
subroutine requires an initial guess for the minimum and converges only to a local
minimum that depends on the initial guess. A thousand random initial guesses (subject
to —1.5=1y, b;=1.5) were taken, and we kept the local minimum with the smallest
value of ¢. The method thus obtained does not satisfy to machine precision the
conditions for order four, because the NAG routine fails in exactly enforcing the
equality constraints. We then kept the values b, and b, provided by the minimization
routine and determined y;,2=i=4, and b;, 3=j =5, by solving the six equations for
order four by means of Newton’s method in quadruple precision. This of course
resulted in a solution that, while being close to that provided by the minimization
procedure, satisfies the order conditions to a very high precision. The coeflicients are

given by
v:=0, b, =0.061758858135626325,
v, =0.205177661542286386, b, =0.338978026553643355,
(2.8) v; = 0.608198943146500973, b;=10.614791307175577566,
v, =0.487278066807586965, b,=—0.140548014659373380,
vs=1, bs;=10.125019822794526133,

along with (2.3) and (2.5). ‘

For this method the quantities in (2.7) are A’® =0.00067 and A®=0.00071. As
a reference method for the numerical tests, we employ the fourth-order, FSAL, nonsym-
plectic formula of Dormand, El-Mikkawy, and Prince [5, Table 3]. This has four stages
(three evaluations) and A’ =0.0018, A =0.00046. Thus, per step, the reference
method achieves an accuracy comparable to that of the symplectic method (2.8), but
is cheaper by a factor of 3/4. In general, symplectic integrators require, for the same
accuracy, more work than their nonsymplectic counterparts since, to impose symplectic-
ness, free parameters are sacrificed that could otherwise be directed at achieving
accuracy.

2.3. Error estimation. The standard way [5], [8] of estimating the errors in a
pth-order RKN method (2.2) is to supplement (2.2) with formulae

Pucibath Y BE(Q),
i=1
(2.9)
Qo =0, Thp, +h7 X BA(Q)
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in such a way that (p,,q,) — (B.+1, 4nt1) is an RKN method of order g <p (usually
g=p-—1 or q=p-2). Of course, the computation of (P,+1, G,.,) employs the same
function evaluations f(Q;) that are used to compute (p,..;, 4.+, ). The difference between
the low-order (P,+1, §.+1) and high-order (p,.1, q.+;) results is then taken to be an
approximation to the local error at the step n— n+1. For (2.8), we take the order g
of the embedded method to be 3.

The weights b,, 1=i=5, must satisfy four equations for the local error in Pnst to
be O(h*). These equations are linear in the b s and it is a simple matter to express
b 1=i=4, in terms of b5, which remains a free parameter. The value of b5 is chosen
accordmg to a procedure suggested by Dormand and Prince. The quantities

e g 1&9]
2.10 col T pes = @
(210 EE B

should be made as smail as possible (letters with a hat refer, of course, to the lower-order
method). The Taylor expansion of the p-component of the error estimator p,.; — P,
has coefficients —¢;* in the order O(h*) terms and coefficients ¢/’ — & in the order
O(h’) terms (cf. (2 6a)). Thus, a small C"*® ensures that, in the (p-component of) the
error estimator, the leading O(h") term dominates over the next, O(h°), term of the
Taylor expansion. This is beneficial, since the mechanism for stepsize selection assumes
an O(h*) behaviour in the estimator. On the other hand, a small B’*® ensures that the
third-order formula used for estimation is sufficiently different from the fourth-order
formula used for timestepping. (Note that as the third-order formula comes closer to
the fourth-order formula, the denominator in B'® tends to 0 and hence B’® tends to
infinity.) We minimize the function ¢(bs) = (B'™)’+(C'™)’ by the simple procedure
of evaluating ¢ at uniformly spaced values of bs (the spacing used was 0.01). This
yields by=0.2.

The coefficients ﬁ:, 1=i=5, are seen as free parameters, i.e., they are not derived
from I; through (2.3). For the local error in §,., to be O(h*), the ﬁ,, 1=i=5, must
satlsfy two (linear) eguatlons this leaves three free parameters. We arbitrarily set
BS =0 and expressed B, and B, in terms of B2 and ,84 The free ,33, 34 are now chosen
to minimize (B>)*+ (C*)?, where

e —&| al

) _ Hc

(2.11) C® =" , p
&) e

The minimization was again performed by sampling the objective function on a grid
with 0.01x0.01 spacing. The weights of the third-order formula (2.9) embedded in
(2.5) are as follows:

b, =—0.127115143890665440, S, =0.110014238746029571,

b, =0.698831995430764851, B, =0.189985761253970428,
(2.12) h, = 0.375269477646788521, B=0.25,

b, =—0.146986329186887931,  f,=—0.05,

bs=0.2, B,=0.

With this choice the quantities in (2.10) and (2.11) are
C'®=1.06, B®=1.06 C®=047, B®=0.25.

For the fourth-order nonsymplectic scheme used as a reference method, Dormand,
El-Mikkawy, and Prince [5] provide an embedded formula with

C'®=1.19, B®=120, C®=1.02, B®=1.03.
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This shows that the minimizations we carried out above are as successful as those
in [5].

2.4. Implementation. The embedded pair (2.8), (2.12) and the reference-embedded
pair of Dormand, El-Mikkawy, and Prince were implemented in a standard way
following very closely the code DOPRIN in [8].

3. Numerical results. Several test problems, including integrable and non-
integrable Hamiltonians, were used. The main conclusions as to the relative merit
of the various algorithms do not greatly depend on the particular test problem,
and hence we only report on the results corresponding to the Newton potential [2]
V(q', ¢°) = —1/||q|| with initial condition

[1+
p'=0, p’= % g'=1-e g¢*=0.
1—e

Here e is a parameter 0= e < 1. The solution is 27-periodic and its projection onto
the (configuration) g-space is an ellipse with eccentricity e and major semiaxis 1.
Initially, the moving mass is at the pericentre of the ellipse (i.e., the closest it can be
to the coordinate origin). After half a period (apocentre), its distance r to the origin
is 1+ e. Thus rnax/ ¥min = (1+€)/(1 — e), which is large for large eccentricities. Moreover,
the ith derivatives of the force f behave like r '*?, so that, for large eccentricities,
the elementary differentials of high order may vary by several orders of magnitude
along the orbit. In fact, this well-known test problem with large e (say, e =0.9) is often
taken as a “‘severe test for the stepsize control procedure” of ODE algorithms [6].

The test problem was integrated by combining each of the eccentricities 0.1, 0.3,
0.5, 0.7, and 0.9 with each of the final times 10 X 27, 30 X 277, 90 X 277, 270 X 277, 810 X 27,
243027, 7290x 27, and 21870 %27 We were particularly interested in long time
intervals, as it is in this sort of simulation that the advantages of symplecticness should
be felt (see [14]). For short time intervals, the local error of the formula is of paramount
importance, and it is as the time interval gets larger that advantages derived from a
better qualitative behaviour become more prominent. In celestial mechanics very long
time integrations are often required with potentials that are small perturbations of the
two-body potential considered here. )

In the tests we used the symplectic variable-step code (SV), the nonsymplectic
variable-step code (NSV), and also fixed-step implementations of the symplectic
formulae (SF) and nonsymplectic formulae (NSF). The variable-step codes were tried
with absolute error tolerances of 107*, 107°,...,107"", and the fixed-step algorithms
were run with stepsizes 27/16,27/32,...,27/2048. Errors were measured in the
Euclidean norm of R*.

Figure 1 gives, for ¢ =0.5 and a final time of 21870 periods, the final error against
the computational effort measured by the number of f-evaluations. The figure contains
information for the runs that yielded errors in the 10" to 10™* range, namely,

(i) SV with tolerances 107'°, 10" (plus signs joined by a dashed line);

(ii) NSV with tolerances 107°, 107'°, 10™"' (circles joined by a solid line);

(iii) SF with timestep 27 /256, 27/512, 27w/1024 (stars joined by a dashed-dotted
line);

(iv) NSF with timestep 27/2048 (a x sign).

Let us first compare the results of SF and NSF. Recall that these RKN formulae
have error constants of roughly the same size, but SF has four evaluations per step
against three evaluations per step in NSF. Thus, on local error considerations alone,
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F1G 1. Error against number of function evaluations, after 21870 periods, e =0.5.

we would expect that for the same global error, the numbers of evaluations of the
NSF and SF would be in a ratio 3/4. On the contrary, the experimental results show
that, for the same error, the symplectic formula is four times less expensive than the
nonsymplectic process (ratio 4/1). This shows that there is something in the error
propagation mechanism of the symplectic algorithm that gives it a clear advantage
over its nonsymplectic counterpart. In the next section we prove rigorously that in the
asymptotic expansion of the global error of the symplectic formula, the coefficient of
the powers h*, h°, h°, and h’ grows linearly with the integration time r. Thus in the
symplectic formula, for small errors, we need h to be small with respect to t~/%. On
the other hand, for the nonsymplectic formula, the coefficient of the leading h* term
of the global error also increases linearly with ¢, but the h° h®, and h’ terms possess
coefficients that grow like ¢°. If ¢ is large, for small errors, h should be small with
respect to t~/°. This is to be compared with h<« t™'/* for the symplectic case. This
shows that for large ¢ symplecticness pays. In fact, when e =0.5, SF improves on NSF
if t4n. is larger than, say, 30 periods.

Turning now to a comparison between NSF and NSV, we observe that for the
formula of Dormand, El-Mikkawy, and Prince the use of variable-stepsizes results in
a gain in efficiency by a factor of two. In the apocentre, the variable-stepsize code
takes stepsizes about seven times as large as those it takes near the pericentre, with
the result that, as expected, NSV saves on function evaluations for a given error. Note
that the line which joins the NSV points has slope —5 in spite of the method having
order four. This is again due to the fact that the coefficient in the leading h* term in
the global error grows linearly with ¢, while the coefficients of the subsequent terms
grow like t%; for t large, t*h° > th* and the method behaves as if its order were five
(see § 3).

On the other hand, for the symplectic formula, going from fixed to variable-
stepsizes results in a decrease in efficiency. We will return to this point later. For the
present, let us note that, with variable stepsizes, the line joining the points of the
symplectic algorithm are in agreement with fifth-order behaviour of the error. In fact,
SV and NSV show very similar behaviour. The only difference between them lies in
the fact that, for a given error, the costs of NSV and SV are in a ratio 3/4, i.e., in the
ratio we would have anticipated from a study of the local errors without taking
symplecticness into account.
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Like Fig. 1, Fig. 2 corresponds to a final time 21870 x 24, but now e =0.3. Again
we have displayed the results corresponding to runs for which the errors lie in the
107" to 10~* range. These are the following:

{i) SV with tolerances 107'°, 10~ (plus signs joined by a dashed line);
(ii) NSV with tolerances 107°, 107" (circles joined by a solid line);

(iii) SF with timestep 27/128, 27/256, 27/512 (stars joined by a dashed-dotted
line);

(iv) NSF with timestep 27/1024, 27/2048 (x sign, dotted line).

We see that the overall pattern is not changed by changing the eccentricity. The
NSV and SV algorithms have efficiencies that are still in the predicted 3/4 ratio. On
the other hand, with e = 0.3, the advantages of NSV over NSF are less marked, as we
would have expected. In fact, for e = 0.3, both variable-step codes only vary the stepsize
along the orbit by a factor of 3. The NSF points, which for e =0.5 were to the right
of the SV dashed line, are now exactly on this SV line.

Figure 3 corresponds to the same final time with e =0.7. The following runs are
represented (results for NSF are not reported for stepsizes used, as errors below 10!
could not be obtained):

(i) SV with tolerances 107'%, 107 (plus signs joined by a dashed line);

10t

102

103

104 . L - s R PR
107 108 109

FI1G. 2. Error against number of function evaluations, after 21870 periods, e =0.3.
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104 N P S TR L " ey
107 108 10°

FI1G. 3. Error against number of function evaluations, after 21870 periods, e =0.7.
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(ii) NSV with tolerances 10~ '°, 107" (circles joined by a solid line);

(iii) SF with time step 277/512, 27r/1024, 27r/2048 (stars joined by a dashed-dotted
line).

Now SV and NSV become more efficient and change h by a factor .of 22.
Nevertheless, SF is still the most efficient method: the advantages of symplecticness
are not offset by the disadvantages of constant h.

For the smaller values of t:,, that we tried, the picture is very much the same,
except if f;,, is not large and e is large, SF is the most efficient method, NSV is second,
and SV is 4/3 times worse than NSV. For fixed f;,,, as e approaches 1, the benefits
of variable steps become more prominent and NSV improves on SF. For fixed e, as
tinas iNCreases, the benefits of symplecticness dominate and SF improves on NSV.

Figure 4 gives, for e=0.5, error against time for SV (tolerance 10719, NSV
(tolerance 107°), SF (h =27/1024), and NSF (h =27/2048). For SF the error shows
a linear behaviour with respect to ¢, as stated earlier. For the other methods the error
grows like .

Figure 5 displays, for e=0.5, the error in energy |H(p,,,q,,)—H(p(t,,),q(t,,))l
against time. Of course, the theoretical solution preserves energy H (p(1),q(t)) =
H(p(0),q(0)) and consequently the error in energy equals the energy growth

10!

102}
10}
10-4 -
105}
106 -
107f.

104

o T T e T e e
Fi1G. 4. Error against time in periods, e =0.5.
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FIG. 5. Error in energy against time in periods, ¢ =0.5.
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|H(p,5, q.)— H(p(0), q(0))|. The runs displayed are similar to those shown in Fig. 4. In
SV, NSV, and NF the error in energy grows linearly with . This is somewhat surprising
since for SV, NSV, and NF, the errors |(p,, q,) — (p(t,), q(t,))| grow like ¢>. Also note
that SF fails in exactly conserving energy, but its energy errors are much smaller than
those associated with the remaining algorithms.

4. Integration of Kepler’s problem by one-step methods. We now investigate
theoretically some of the experimental findings presented above. Our analysis is not
restricted to the RKN case and covers general one-step methods.

4.1. Some remarks on Kepler’s problem. Let us begin by rewriting Kepler’s problem
in the compact form

(4.1) Y=F(Y),

where Y=[p', p’, q", 4’1" and F=[f",p"]”, with f=1(q) the force (cf. (2.1)). The
notation G = G(Y) will be used to refer to the gradient VH of the Hamiltonian H with
respect to Y. Note that F and G are orthogonal at each point Y because H is an
invariant quantity for (4.1).

We consider (4.1) in the region Q of Y-space covered by elliptic motions, i.e., the
region where the energy H is less than 0 (so that escape to o is not possible), and the
angular momentum does not vanish (thus avoiding the case where the trajectory in
g-space degenerates into a straight segment). All solutions in {2 are periodic with a
period

(4.2) T=T(H)=2n/v(2|H|,

which only depends on the energy H. A reference for Kepler’s problem is, e.g., [2, § 8E].
Let us, once and for all, fix an initial condition Y,€ Q) and set F,=F(Y,), G,=
G(Y,). We denote by @ the one-period map ¢r,, To= T(H(Y,)). The analysis to follow
relies heavily on the properties of the differential ®} of ® at Y, (this is sometimes
referred to as the monodromy operator of the periodic solution that goes through Y,).
LEMMA 1. The differential ®y, is a rank-one modification of the identity given by

(4.3) ®)=T+W,G,,

with Wy = T'(H(Y,))F, a nonzero vector in R* tangent at Y, to the solution of Kepler's
problem being investigated. Equivalently, ®; is the linear operator in R* such that, for
vectors V orthogonal to Gy,

(4.4) P)V=V
and
(4.5) ®1Go=Gy+ (G G,)W,.

Proof. We present two different proofs. The first is analytic and is due to R. D.
Skeel. Set

o(Y) = ‘Pr(¢T(H(Y))(Y)) =¢,(Y),
where 7= Ty— T(H(Y)) is a function of Y. Then

DY) = = p'(Y) + (di w,m)(w)T

— oY) - (di wfm) T(H(Y))G(Y)",
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and, since ¢, as a function of ¢ satisfies (4.1),
@'(Y) = ¢ (Y) - F(e,(Y)) T'(H(Y))G(Y)".

Now evaluation at Y =Y, leads to 7=0 and hence to ¢, equal to the identity map so
that ¢.(Y,) =1 and (4.3) follows.

The second proof is more geometric. Consider a vector V orthogonal to G, and
consider the new initial condition YO— Y,+ eV with ¢ small. Since the increment eV
is orthogonal to the energy gradient G, the new energy H (Yo) equals the old energy
H(Y,) and the new period T(H(Y,)) equals the old perlod T, (see (2.1)). Here and
later “equal” is _understood to mean “‘equal except for O(&?) terms.” Hence CD(YO) =
oT, (Y,) equals Y,, which implies, by the definition of differential, that ®5(eV) = ¢V.
This proves (4.4). Assume now that the new initial condition is chosen to be Yo—
Y,+£Gy. Now the new energy is in excess of H(Y,) by an amount ¢(G(G,) and,
accordingly, the new period is in excess from T, by an amount 8 = e T"( H(Y,))(G{ G,).
Hence after T, units of time Y has not had time to return to its initial position and
rather lags behind by a vector 8F,, because F, is the velocity of the flow at Y,. This
proves (4.5).

After (4.3) it is a simple matter to compute the Nth power of ®}. This is given by

(4.6) ® =T+ NW,G].

This formula essentially says (cf. the second proof of the lemma above) that if ?0 is
an initial condition of the form Yo+ ¢V, ¢ small, then after N time increments of length
T°, the solution <pNT0(Y0) that starts at Y, differs from the solution ent(Yo) =Y, by
terms eV+eN(Gg V)W,. The difference grows linearly with N; this growth is in the
direction of W,, tangent at Y, to the solution curve, and furthermore only depends
on the initial deviation eV through its component £(Gg V) in the direction of G,.

4.2. Basic error estimate. Let us consider a smooth one-step method i, for the
numerical integration of Kepler’s problem. This method is assumed to be convergent
of order p, i.e., ¥;,(Yy) — @1(Yy) = O(h*?) as h-> 0 with nh in a bounded time interval.
Furthermore, we assume that the differentials (Jacobian matrices) (7)'(Y) also con-
verge with order p to the differential of the flow, i.e., (¢7)'(Y)— (@) (Y)= O(h®), h->
0, nh bounded. This is automatically satisfied by most standard methods, including
Runge-Kutta and Runge-Kutta-Nystrom methods.

For simplicity, we only consider the case where the steplength h is of the form
T,/ v, with v a positive integer, and look at the difference E, between the numerical
¥ (Y,) and theoretical ¢;™(Y,) = @nr,(Yo) =Y, after N periods of the motion. The
extension to general values of h and times which are not whole multiples of T, is
possible but messy, and provides no further insight.

Set ¥, = ¢, so that ¥, is the mapping that advances the numerical solution T,
units of time. We can then write

Ey= \I’;].V(Yo) Y= \I’h(q’i]:vil(Yo)) -V, (Yo) +E,
=V,En_ 1+ O(|En—[*) +E,
=V,Exy_;+E,+ O(h*)
=®(EN_,+E,+O(h’).
Here and later, the constant implied in the O symbol depends on N. By induction,
Exy=[I+®)+ - +®"'E,+ O(h™).
We apply (4.6) to conclude the following theorem.



VARIABLE-STEP SYMPLECTIC INTEGRATION 947

THEOREM 1. Under the hypothesis above,
47 Ey = NE, +4N>= N)(GIE,)W, + O(h¥).

In other words, except for O(h’?) terms, the error En after N periods of the
solution have been computed grows quadratically with N. The leading N* growth is
in the direction tangent to the solution at Y,, corresponding to a phase error along
the trajectory. After taking the inner product of (4.7) and the energy gradient G,, we
conclude, in view of the orthogonality of G, and F,, that the energy error after N
periods is, except for O(h*?) terms, N times the energy error after the first period (cf.
Fig. 5).

4.3. The symplectic case. In this subsection we look at the situation where i, is
symplectic. The key fact for the analysis [14] is that, given an arbitrarily large positive
integer g, it is possible to construct a modified autonomous Hamiltonian function
ﬁh = H + O(h") such that ¢, is consistent of order q with the Hamiltonian problem
with Hamiltonian I~Ih, ie, ¥, —@na, =O0(h"""), where ©n 5, is the h-flow of the problem
with Hamiltonian H,,. In other words, the mapping ¢, we are using to integrate Kepler’s
problem can be seen (except for O(h?"') terms) as the exact flow of a nearby
Hamiltonian problem with Hamiltonian H,. Here we choose q =2p. The computed
points Y,, which are O(h”) away from the solution Y(s,) of Kepler’s problem, are
only O(h*?) away from the solution through Y, of the modified problem. In particuular,

q’h(Yo) - ‘PTO,FI;.(YO) = O(th)
and, by implication,
(4.8) H,(¥,,(Yo)) - A, (¢1,.4,(Yo) = O(h™).

On the other hand, I:I,, is a conserved quantity for the flow ¢r, 5, so that (4.8) can be
rewritten

(4.9) H,(¥,,(Yo) ~ Hi(Yo) = O(h™).
Taylor expansion of the left-hand side of (4.9) yields
(4.10) A,(¥,,(Y,)) ~ H,(Yo) = Gy 'Ei + O(|E,|*) = G§ 'E, + O(h™),

where Gg is the gradient of H, at Y,. Comparison of (4.9) with (4.10) shows that
GSTE1 = O(h*"); the error after one period E, is “‘almost” orthogonal to the gradient
G/ of the modified energy H,. Finally,

IGJE\| =|(Go—G{)E, + G{ E\| = Go— G| |E, | +]GEE,y| = O(R?).

Here we have used the fact that the derivatives of H, approximate the derivatives of
H to the same order, O(h”), to which H, approximates H; see [14]. The last bound
implies that for a symplectic method the component G4 E, of the error E, is O(h?"),
so that in view of (4.7), we may state (cf. the dashed-dotted lines in Figs. 4 and 5) the
following theorem. ,

THEOREM 2. For a constant-stepsize symplectic method,

Eyn = NE,;+ O(h*?).
Furthermore, the energy error satisfies
H(¥5 (Yo)) = H(Y,) = O(h™).

4.4. The nonsymplectic case. In this section we explain the experimental fact that
the fourth-order method NSF employed in § 3 behaves as if its order were five. We
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consider a general one-step method as in § 4.3, but now assume that the order p is
even ( p = 2) and, furthermore, that ¢, possesses some symmetries. First, we assume that

(4.11) (P, @) = ¥ (Po, qo) = (=P, q) = ¥_1(—Ppo, o)-

This symmetry holds for the flow of any problem of the form (2.1). Note that according
to (2.2), RKN methods obey (4.11). Second, we assume that (p, q) = ¥,{po, qo) inherits
from ¢, the rotational symmetry of Kepler’s problem. Again, this is true for standard
methods.

Let us denote by M(¢) the coefficient of the leading O(h”) term in the asymptotic
expansion of the global error of the method ¢,. It is well known that M satisfies the
variational equation

dM(1)

(4.12) ar

=J(1)M(r) +L(1),

where J(t) is the Jacobian of the vector field evaluated at the theoretical solution
#:(Yo), and L(?) is the coefficient of the leading O(h”*"') term in the expansion of the
local error. We need the following lemma.

LEMMA 2. Let dy/dt=f(y) be any smooth differential system with a conserved
quantity H. Let

dm(t)

(4.13) dr

=J(tym(t)+ (1)
be the corresponding variational equation at a solution of the system. Then,
d
—((VH)"'m)=(VH)"1,
dt
Proof. From (4.13),
d T T T d T
E(VH) m=(VH)' J(t)ym+(VH)"'l+ EVH m.
Differentiation with respect to y of the identity (VH)"f= 0 and evaluation of the result
at the solution of dy/dt=f(y) leads to (VH)"J+(dVH/dt)" =0, and the proof is

complete.
The application of Lemma 2 to (4.12) reveals that

d

—G'M=G"L.
dt
We integrate over one period to get
TO
(4.14) GiM(T,) = j G'L .
0

Now let us express G” L in terms of polar coordinates r, 7, 6, 6. The rotational symmetry
assumed above implies that G"L does not depend on 6. By conservation of angular
momentum along the solution,  can be expressed in terms of r. Thus, in (4.14) the
integrand is a function of r and 7. Furthermore, G" L must be odd in . This is because
h?*'G™L is the leading term in energy error after one step, and by (4.11) such an error
remains invariant when h is changed into —h and 7 into —F, while keeping r constant.
Now, as t increases from 0 to Ty, the solution takes each value of r twice with opposite
values of 7. (This occurs when the moving point passes through points in Kepler’s
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ellipse that are symmetric with respect to the major axis.) Hence, the integral in (4.14)
vanishes and Gy M(T,) =0, i.e., GG E,= O(h”""). When this information is taken into
(4.7) we see that Ey contains O(Nh”) and O(N°h?*") terms. Assume that N is very
large. The terms Nh”, N°h”"! are of the same size when h = 1/ N, which is unrealistically
small since for h=1/N, Nk = N?h?"'= N P*'« 1. Hence, for realistic choices of
h, N*’h?*! is much larger than Nk?, and the method behaves as an order p -+ 1 method
with a large N? error constant.

4.5. Variable steps. Let us now study the situation for the variable-step integrators.
In the experiments we only used one initial condition Y,. The choice of initial condition
and tolerance determines the sequence of stepsizes hy, h,, ... used in the integration.
In a “thought experiment,” let us imagine that even if other neighbouring initial
conditions had been used, we would have still employed the same sequence h,, h,, ...
used for Y,, rather than letting the step-changing mechanism dictate the choices of
stepsizes. This is actually a recommended procedure that ensures that the output of
an automatic code is a smooth function of the initial data [8, § I1.5]. In our context it
also ensures that, if a symplectic formula ¢, is used, then the transformation ¢, - - - ¢,
which advances the solution from time ¢t =0 to time f,=h,+ -+ +h,, is indeed a
symplectic transformation. In extending the analysis above to the variable-step experi-
ments, we encounter some difficulties. Previously, we used the fact that we advanced
the solution from time ¢ =0 to time t = NT, by iterating N times an operator ¥, that
advances the solution T, units of time. This is not quite true now; it is possible for T,
not to be a steppoint t,,. But even if it is a steppoint, the sequence of stepsizes employed
to go around the orbit in the second, third, ... period is likely to be slightly different
from the sequence used in the first period. These difficulties will be ignored for the
analysis: we assume that T, is a steppoint t,,, and that the sequence of stepsizes used
to cover the nth period (n—1)To=t=nT, is just a duplicate of the sequence used to
cover the first period 0=t = T,. These assumptions are “almost” satisfied for small
tolerances; see [20], where it is rigorously shown that, essentially, variable-step
algorithms employ a steplength that only depends on the current point in phase space
so that, for periodic problems, stepsizes repeat themselves periodically. With our
assumptions, the solution after N orbits is given by W (Y,), where U, =, - ¢y,
Then the analysis in § 4.2 leading to Theorem 1 holds with h, the maximum stepsize.
Furthermore, the cancellation described in § 4.4 also holds. The functions M and L
still make sense [16] provided that the stepsizes satisfy

h,=7y(t,)h+ O(h?),

with y a stepsize function; (4.12) must be replaced by [16]

d
A riome+ v,
and (4.14) becomes
GIM(T,) = J' " yPGTL du.

From here we conclude that GJE, = O(h”"") under the extra hypothesis that y takes
the same value as the moving body passes through points in configuration space that
are mutually symmetric with respect to the major axis. This hypothesis is certainly
reasonable.
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On the other hand, the material in § 4.3 does not appear to be extensible to the
variable-step situation. Indeed, the experiments indicate that it cannot be extended.
When trying to extend the analysis in § 4.3 to variable steps, we encounter the difficulty
that the modified Hamiltonian H,, depends on the steplength The computed (fy; q;)
is close to the solution S, of the system with Hamiltonian H,, which at t =0 passes
through (po, qo)- _The computed (p;,q,) is close to the solution S, of the system
associated with H,,2 that at ¢t = h, passes through (p,, q,), etc. Clearly, S; # S, (unless
H,,l H,,z) and we do not have a single trajectory near which the computed points
stay. There is not a single pseudoenergy H, “almost” conserved by the numerical
points, and nothing can be said of the projection G4 E,, whose smallness is the key
to the success of the symplectic constant-stepsize integrators.

4.6. Remarks and extensions. The fact that for Kepler’s problem standard
integrators lead to quadratic error growth while symplectic constant-stepsize integrators
lead to linear error growth has been noted before in the literature; see Kinoshita,
Yoshida, and Nakay [10]. In [22], Yoshida studies the energy error in the symplectic
integration of Kepler’s problem. His analysis is only formal and, like ours, resorts to
a modified Hamiltonian fI,,. Yoshida assumes that the modified Hamiltonian can be
chosen to satisfy

(4.15) U= &na, =0,

i.e., that a modified Hamiltonian problem exists so that the computed points exactly
solve the modified problem. However, it is known that for nonlinear problems, while
it is possible to construct a divergent formal power series for H, fulfilling (4.15), no
actual function H, can satisfy (4.15). Therefore, the analysis in [22] is only of heuristic
value. (Note that rather than (4.15), we assumed only that ¢, — ¢, 3, = O(h*?).)

On the other hand, the ideas used in the analysis in this section are not restricted
to Kepler’s problem. For instance, in §§ 4.2-4.4, it is enough to assume that all solutions
of the problem being integrated are periodic with a period that only depends on the
value of the energy H (and actually changes with H). These assumptions are satisfied
by all nonlinear one-degree-of-freedom oscillators, such as the well-known pendulum
equation. Therefore, the conclusions in §§ 4.2-4.4 hold for such oscillators. This proves
Conjecture 3 in §IV.6 D of Stoffer’s thesis [18], which states that for nonlinear
oscillators, standard methods have quadratic error growth, and that symplectic methods
produce errors that only grow linearly. (Nonlinearity is essential to guarantee a
nontrivial dependence of the period on the energy, leading to Wy # 0 in (4.6).)

5. Conclusions. Let us summarize our findings.

(i) The experiments with Kepler’s problem reported above and experiments with
other Hamiltonian problems (not reported in this paper) reveal that constant-stepsize
symplectic integrators can be more efficient than variable-step codes. This provides
motivation for the further study of symplectic integration. Comparisons between
symplectic and nonsymplectic formulae presented so far in the literature (see [14] for
references) have concentrated on constant stepsizes. Qur experiments indicate that it
is reasonable to expect that, in the future, symplectic software can be developed which
outperforms, on Hamiltonian problems, standard variable-step codes. The paper by
Herbst and Ablowitz [9], written after the present work was completed, provides a
dramatic example of a simple symplectic algorithm outperforming NAG library
software.

(ii) The advantages of using symplectic formulae are lost when these formulae
are used in a variable-stepsize environment. This came as a surprise to us. However,
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after completing this work, we discovered that in 1988, Stoffer [19] had argued that
symplectic integrators should not be used with variable stepsizes. His argument is as
follows. Integrating a system of ODEs dy/dt =f(y) with a variable-step algorithm is
“equivalent” [20] to integrating, with constant stepsizes, a transformed problem
dy/dr =r(y)f(y), where the new time 7 is related to the old time by dt/dr = r(y). The
transformed system is not Hamiltonian, even if the original system is, so that the
advantages of symplecticness are lost in the transformation. An alternative argument
to justify the failure of variable-step symplectic algorithms has been put forward in
[14]. A key property of symplectic formulae i, for a Hamiltonian problem with
Hamiltonian H is the existence of a modlﬁed Hamiltonian Hh in such a way that i,

“almost™ commdes with the h-flow ¢, g, of H,, “Almost” means that, given any large
integer g, H, can be found in such a way that @, — dnp, = O(h"“). With constant
stepsizes, it is possible to interpret the error in a “backward” way: a numerically
calculated solution corresponding to H is “almost™ an exact solution of a neighbouring
Hamiltonian H,. In § 4.5 we saw how such a backward-error analysis interpretation
fails in a variable-stepsize situation. An additional reference useful in connection with
variable steps for symplectic integrators is [17].

(iii) For the particular cases of Kepler’s problem and nonlinear one-degree-of-
freedom oscillators, a complete analysis has been presented of the performance of
symplectic and nonsymplectic integrators. It has been shown that the advantages of
symplectic integrators include not only better qualitative behaviour, but also better
quantitative properties in the error growth mechanism.
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