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HIGH-ORDER SYMPLECTIC RUNGE-KUTTA-NYSTROM METHODS*
M. P. CALVO! anD J. M. SANZ-SERNA'

Abstract. A numerical method for ordinary differential equations is called symplectic if, when applied
to Hamiltonian problems, it preserves the symplectic structure in phase space, thus reproducing the main
qualitative property of solutions of Hamiltonian systems. The authors construct and test symplectic, explicit
Runge-Kutta-Nystrom (RKN) methods of order 8. The outcome of the investigation is that existing high-
order, symplectic RKN formulae require so many evaluations per step that they are much less efficient than
conventional eighth-order nonsymplectic, variable-step-size integrators even for low accuracy. However, sym-
plectic integration is of use in the study of qualitative features of the systems being integrated.
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1. Introduction. In this paper we are concerned with Runge-Kutta-Nystrom
(RKN) methods for the numerical integration of second-order systems of differential
equations of the special form

(1.1) d¥y/dt =fy), y=[W"yA N,

or, equivalently, of first-order systems

dy . dy
For the RKN formula specified by the tableau
Y11 - Kl
(12) Vs|Qs1 *° Olgg?
by --- b,
Br - Bs

the equations that describe the step ¢, — tn4+1 = t, + h take the form

Y, =y, +hyy, + h* Z ai;£(Y;),
=1

Yn+1 =y, + hz blf(Y'L)a

i=1

Vi1 =Yn + ¥, + B2 D BE(Y),

i=1
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where Y; denote the internal stages. Throughout the paper we suppose that in (1.2)
(1.3) Bi = bi(1 — ), 1<i< s

this is a standard assumption that significantly decreases the number of order conditions
that must be imposed on the method coeflicients to ensure a given order of consistency;
see [10, Chap. 2, Lemma 13.13].

If the function fin (1.1) is the gradient of a scalar potential -V = —V (y) and we
set p =¥, q =Y, then (1.1) may obviously be rewritten as

dp’ ov d!
1'4 —— —_— = < < .
(14) & = "og o Py 1sIsN

This is the Hamiltonian system of ordinary differential equations

aw __oH  dg' _oH

= = — <I<
dt Oql’ dt  dpl’ l<sIsN

with Hamiltonian function
1
H=H(p,q =T(P)+V(@, T()=;p"p

In mechanics the g variables represent Lagrangian coordinates, the p variables repre-
sent the corresponding momenta, T represents the potential energy, V' represents the
potential energy and H represents the total energy.

The recent literature has devoted much attention to the integration of Hamiltonian
systems by means of canonical or symplectic methods; see [17] for a survey. A one-
step numerical method is said to be canonical or symplectic if it preserves the so-called
symplectic structure of the space of variables (p, q), thus reproducing the main qualita-
tive property of solutions of Hamiltonian systems [2]. Suris [19] showed that the RKN
method (1.2) is symplectic when applied to systems (1.4) if the coefficients satisfy the
relations

(1.5) bi(B; — auz) = b (B; — js), 1<4,j<s

see also [13]. On the other hand, if (1.2) does not possess redundant stages, (1.5) is also
necessary for symplecticness; a rigorous proof of this necessity can be seen in [3] (cf. [1,
§5]). In the remainder of the paper we use the expression “symplectic RKN method” to
refer to RKN methods (1.2) that satisfy (1.5).

Okunbor and Skeel [14] studied the families of explicit, symplectic RKN methods
with one, two, or three stages. The present authors [4], [S], [7] have constructed and
tested an explicit, five-stage, fourth-order symplectic RKN method with optimized error
constants. This method uses four function evaluations per step: the evaluation for the
fifth stage of the current step coincides with the first evaluation in the next step (FSAL
(first same as last) technique). In [15] Okunbor and Skeel construct explicit symplectic
RKN formulae with five stages and seven stages and orders 5 and 6, respectively. For
separable Hamiltonian systems [1], Yoshida [20] derives explicit, symplectic methods
with order 8. When applied to problems of the form (1.1), Yoshida’s methods reduce to
RKN schemes of order 8 with 16 stages and 15 evaluations per step.

The experiments in [7] show that in the accurate long-time integration of problems
of the form (1.4) the constant-step-size implementation of the fourth-order symplectic
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formula constructed there is more efficient than a variable-step-size, fourth-order code
based on an embedded RKN pair due to Dormand, El-Mikkawy, and Prince [8], [9]. The
purpose of the present paper is to construct explicit, symplectic RKN methods of order
8 and to compare them with standard nonsymplectic RKN codes of the same order. The
outcome of our investigation is that existing high-order, symplectic RKN formulae re-
quire so many evaluations per step that they are much less efficient than conventional
eighth-order nonsymplectic, variable-step-size integrators, even for low accuracy. How-
ever, symplectic integration is of use in the study of qualitative features of the systems
being integrated.

The structure of the paper is as follows. Section 2 reviews the theory of order con-
ditions for symplectic RKN. Section 3 deals with the simplifying assumptions used later
in the derivation of methods. In §4 we present a family of explicit, symplectic RKN
methods. Specific order-7 methods within this family are constructed in §5. Section 6 is
devoted to order-8 formulae, and §7 contains some numerical illustrations.

2. Order conditions for symplectic RKN methods. The conditions that must be im-
posed for an RKN method (1.2) for (1.1) to have order > r are well known; the reader
is referred to [10], whose terminology we follow. There is an order equation for each
(rooted) SN-tree with r or fewer vertices (recall that (1.3) is assumed throughout). As an
illustration, we have depicted in Fig. 1 the 10 SN-trees with six vertices. Furthermore, Ta-
ble 1 displays the number m of SN-trees with r vertices, 1 < r < 10. Clearly, for (1.2) to
have order > r, the required number of order conditions is 3 _;_; m;, a quantity that has
also been tabulated in Table 1. Apparently, the generating function M (z) = 3o, m;2*
for the sequence {m, }2°, was first studied in {6].

In [6] we proved that the symplecticness conditions (1.5) act as simplifying assump-
tions, i.e., when (1.5) holds, not all order conditions are independent and some of them
are implied by the remaining ones. For instance, for a symplectic method with order
> 5, the order condition associated with the tree ¢ 2 is equivalent to the order condition
associated with tg g. This comes about because t¢ 2 and ¢ g consist of the same vertices
and edges and differ only in the location of the root. In other words, t¢ 2 and ts g are the
same as unrooted SN-trees. For the same reason there is equivalence between ¢ 3 and
t6,0, between tg 4 and tg 5, and among tg ¢, t6,7 and ¢ 10. Thus for a symplectic method
with order > 5 to have order 6 it is enough to impose five order conditions, one for each
equivalence class {61}, {t6,2, t6,8}> {t6,3, t6,9}> {t6.4,t6,5}> {t6,6,t6,7,t6,10}. The num-
ber m} of corresponding equivalence classes for SN-trees with r vertices, 1 < r < 10,
is given in Table 1. The accumulated quantity Y ;_, m} gives the total number of con-
ditions for (1.2) subject to (1.5) to have order > r. A comparison of the third and fifth
columns of Table 1 bears out the substantial reduction in order conditions implied by
symplecticness.

3. Standard simplifying assumptions. Let us now leave aside the symplecticness
conditions (1.5) and consider the well-known simplifying assumptions [10, Chap. 2,
Lemma 13.14]

hd 2
i .
(31) jglaij = —5—, 1 <1< 8,

that are often used in the construction of high-order RKN methods. When (1.2) satisfies
(3.1), it is possible to disregard the order conditions associated with SN-trees with two
or more vertices where at least one end vertex is fat. The order conditions for such trees
are equivalent to order conditions for trees where all end vertices are meager. The basis
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ts,1 te2 te3 to4 tes
tes te,7 tos teo te,10

FIG. 1. SN-trees with six vertices.

TABLE 1
r r r r
r me Z m; m} Z m;  m Z m] mi* Z mi*
i=1 i=1 i=1 i=1

1 1 1 1 1 1 1 1 1

2 1 2 1 2 1 2 1 2

3 2 4 2 4 1 3 1 3

4 3 7 2 6 2 5 1 4

5 6 13 4 10 3 8 2 6

6 10 23 5 15 5 13 2 8

7 20 43 10 25 9 22 4 12

8 36 79 14 39 15 37 5 17

9 72 151 27 66 27 64 9 26
10 137 288 43 109 48 112 13 39

for this equivalence is illustrated in Fig. 2, where the order conditions for both trees
are equivalent provided that the circle with the three branches at the bottom denotes
in both cases the same arbitrary SN-tree. By iteration of the reduction in Fig. 2, the
order condition for any tree with two or more vertices can be seen to be equivalent to
order conditions for trees with only meager end vertices. For instance, in Fig. 1 the order
condition for ¢g » is the same as the order condition for ¢¢,; and may be disregarded. For
analogous reasons the order conditions for tg 3, t6.6, t6,7, t6,9 may be ignored, and this
leaves five trees with six vertices to be considered. For general r we have the following
result (caution: a prime does not mean differentiation!).

THEOREM 3.1. Let m/.,r > 2 denote the number of SN-trees with r vertices without fat
end vertices, and set m| = 1. Then

ms jg — 1 4 e — 1
(32) m!, = > ( s+ Ja )m(mk_lﬂk )
k31,33 1k 13 Ik
j1+3ig+-Fkig=r—1

and the corresponding generating function M'(z) = Y2, m..z" satisfies the equation
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O O

FI1G. 2. Equivalent SN-trees if (3.1) holds.

(1= 2)(1—23)™2--- (1 — 2k) k-1

(33) M'(2) =

Proof. For r > 2 consider a special Nystrom tree ¢ with r vertices and remove its
root. This gives rise to, say, j; graphs with one vertex, j, graphs with two vertices, etc.
If ¢ had no fat end vertex, then j» = 0 and for k > 2 each among the j; graphs with &
vertices consist of a meager vertex (that was a child of the root in the original ¢) followed
by a special Nystrom tree of order k — 1 where all end vertices are meager. Hence for
k > 2 the ji graphs with k vertices can be chosen in

m;c_l + 51
ik

different ways. This leads to (3.2). Equation (3.3) is a direct consequence of (3.2), along
with the formula

1 °°(m+j—1) .
1y AR DL
A=z j

The theorem makes it possible to recursively compute the m,. These have been
tabulated in Table 1 for 1 < r < 10. A comparison of the values of the quantities ) m;
and 5 m! reveals that (1.5) and (3.1) leave roughly the same number of independent
conditions to be considered. Therefore, in a sense (1.5) and (3.1) are as effective as
simplifying assumptions. However, in (3.1) there are only s conditions to be imposed,
whereas (1.5) comprises s(s — 1)/2 relations (note that i and j play a symmetric role).
Thus if one is not interested in Hamiltonian problems, (3.1) should clearly be preferred
to (1.5). On the other hand, if to achieve symplecticness we impose (1.5), then we have
reduced the number of order conditions by roughly the same amount we would have
reduced that number by imposing the familiar simplifying assumptions (3.1).

The question arises of what happens when both (1.5) and (3.1) hold. For instance, for
T = 6,t6,1,t6,2, t6,3 are equivalent after (3.1) and {t¢,2,t6,8} and {ts 3,69} are equiva-
lence classes for (1.5), so that tg 1, t6,2, ts,3, 6,8, t6,9 all become equivalent. For the same
reason, the order conditions for the remaining order-6 trees tg 4, 6.5, 6,6, t6,7, te,10 form
a second equivalence class. Hence under (1.5) and (3.1) there are only two order condi-
tions arising from order-6 trees. For general r let us say that two SN-trees ¢, t* r vertices
are S-equivalent if there exist a sequence of SN-trees ¢1,2,...,t With t; = &, = t7,
where t; and t;,1, 1 < i < k — 1, either are related as in Fig. 2 or differ only in the
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location of the root. Thus if (1.5) and (3.1) hold and (1.2) has order > r — 1, then order
conditions for ¢ and t* are equivalent whenever ¢ and t* are S-equivalent.

THEOREM 3.2. Let m;* denote the number of equivalence classes of SN-trees of order
7 under the relation S. Then the generating function M'* (z) = 322 m/*2" is given by

(3.4) M"™(2) = M'(2) — La(M'(2)2 — M'(22)).

Proof. For a given r > 2 let us consider the m} free or unrooted SN-trees. There is
one such tree for each equivalence class based on (1.5). Those free trees that have one
or more fat end vertex can be deleted in view of (3.1). Our task is to count the free trees
that remain after such a deletion. As in [6], we resort to the notion of centroid of a free
tree; see, e.g., [12], [18].

The following cases are possible for the free trees that remain.

(1) There is one centroid that is a meager vertex. By chopping off the centroid we
obtain two (rooted) SN-trees. These must have the same order j, in view of the definition
of centroid. Hence in this case r must be odd and j = (r — 1)/2. For r odd r > 3 in view
of the definition of m}, j > 2, there are

m! +1 1
3.5) ( T_12/2 ) = Emzr—l)/Z(mzr—l)/Z +1)
free trees in this case. For r = 3 obviously there is no free tree in this case.

(ii) There are two centroids. In this situation r must be even and the centroids are
adjacent; one of them is fat and the other is meager. Chop off the meager centroid to
get a rooted SN-tree of order /2 without fat end vertices and to get a rooted SN-tree of
order r/2 — 1 without fat end vertices. Therefore, for r even, r > 4, there are

(3.6) m'lr/Zm'lr/2—1

free trees in this category. For r = 4 this category is empty.
(iii) There is one centroid, and this is fat. The number of equivalence classes in this
case is

(37) m:' - (mllm:'—2 +t+ m',r—ma.x(3,r/2)m;nax(3,r/2))

if 7 is even and

(3.8) my, — (mymy_s+ -+ m;'—ma.x(3,(1'+1)/2)m£nax(3,(r+1)/2)—1)

if 7 is odd. These formulae are proved by an argument similar to that used to obtain [12,
§2.3.4.4, formula (8)].

Formula (3.4) is a consequence of (3.5)—(3.8). O

The last column in Table 1 bears out the important reduction in the number of order
conditions brought about by the combination of (1.5) and (3.1). In Fig. 3 we have de-
picted representatives of the 12 S-classes of equivalence to be considered for order > 7,
together with the corresponding order conditions.
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* T =56 -1=0

L T2,1 P,y = by — 1/2 =0

N T Q3 =by?—1/3=0

N T G =cbP-1/4=0
T Qs =sbivi—-1/5=0

é 75,2 D55 = T bivioyy; —1/30 =10
2 76,1 1 =xb?—1/6=0

é 76,2 D62 = £biyloyvi —1/36 =0
Ny S =sbnf-1/7=0

\6 1,2 70 = Chfayy —1/42=0
tﬁ 73 @73 =sbfoun? —1/84=0
é 77,4 $4=5 biicij oY — 1/840 =0

FiG. 3.

Order conditions for order > 7 under (1.5) and (3.1).

1243

4. Family of explicit, symplectic RKN methods. Explicit symplectic RKN methods

are of the form [14]
M 0 0 0 0
Y2 b1(72 _’Yl) 0 0 0
4.1) Yo—1|b1(Ys—1 — M) ba(Vs—1 —Y2) - 0 0
Vs b1(7s - ’Yl) b2(’}’s — 72) . bs—l(’)’s _ 73—1) 0
bl b2 v bs—l b‘9
/31 :82 - /83_1 ,83
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subject to (1.3). Thus with s stages there are 2s free parameters. For s > 2 we consider
the subclass of methods given by

(4.2) 1 =0, s =1

and

(43) bi=7%/2 bi=(Yit1—7-1)/2, 2<i<s=1; by=(1—"0-1)/2

Note that (4.2) and (4.3) leave only s — 2 free parameters ~,...,7,—1 in (4.1). For
arbitrarily fixed values of -y,, . .. , 75—1, the following properties are easily verified.

(i) Method (4.1)—(4.3) has the FSAL property: the sth stage of the current step
coincides with the first stage of the next step. Thus (4.1)—(4.3) effectively require s — 1
evaluations per step.

(ii) Method (4.1)—(4.3) satisfies the standard simplifying assumptions (3.1).

(iii) Method (4.1)~(4.3) has order > 2, i.e., the conditions }_b; = 1, 3" b;y; = 5 are
implied by the structure of tableau (4.1) and relations (4.2) and (4.3).

It is also useful to observe that a step of length  with (4. 1)——(4 3) is a concatenation
of s — 1 steps of successive lengths (v2 — v1)h, (3 — ¥2)h,. .., (¥s — Ys—1)h with the
simple method

0100
1|30
(4.4) 1, .
2 2
3 0

that results after setting s = 2 in (4.1)~(4.3). Let us be more precise. Let 1), represent
the transformation in (y,y)-space that effects a step of length h with (4.1)-(4.3), i.e.,
(Vnt1>Yne1) = Va(¥n ¥n) if (¥ny1,¥ny1) is the result of a step of length A from the

preceding approximation (y,,,y,,). Let 1/:}? | represent the corresponding transformation
for (4.4). Then

— 5l
(4.5) ¢h - ¢(73_7s—1)h ) 1/)('72 —v)h

This formula makes it easy to find the adjoint method v}, of ¢,,. Recall that by definition
[10] ¢;, is the method such that 1* ;, inverts v, i.e., a step of length h with (4.1)—-(4.3) fol-
lowed by a step of length —h with the adjoint method of (4.1)-(4.3) leaves the numerical
solution unchanged. From (4.5)

— (2] [2] 2]*
R [w(%—%—l)h ) ('Yz ‘71)h] ’72 m)h’ "/)(’h —Ys—1)h?

but (4.4) is easily seen to be selfadjoint and hence

Vi w(’h 1)k’ "l)('h —Ya—1)h"

Comparison with (4.5) reveals that +;, is the method of the family (4.1)—(4.3) based on
the abscissae 73, ...,vs_; defined by v} = 1 — ye41-4.
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5. Constructing seventh-order methods. In this section we describe our experience
in constructing order-7 methods of the form (4.1)—(4.3). Since both (1.5) and (3.1) hold,
the last column in Table 1 shows that there are 12 order conditions to be imposed (see
Fig. 3). However, the order conditions ®,; = 0, ®3; = 0 that guarantee order > 2
are automatically satisfied, so that the choice of the s — 2 free parameters 7z, ..., 7s—1
should be directed toward enforcing the 10 remaining conditions

(5.1) @3,1 =0, ¢4,1 =0,..., @7’4 =0.

This suggests s > 12. The choice s = 12 leaves no freedom to tune the formula, and we
set s = 13. We therefore undertook the task of numerically solving the nonlinear system
(5.1) comprising 10 equations in the 11 unknowns 2, . . . , 712. The solutions form curves
in R!! that can be followed by continuation once a particular solution has been found.

Finding initial solutions of (5.1) to start the continuation procedure was not an easy
task. After many unsuccessful attempts the following strategy was adopted. We began
by considering the function

A= ‘I’g,l + <I>Z,'1 + <I>§’1 + <I>§’2 + ‘I’g,l

(see Fig. 3) of the variables 2, . . ., 712. We minimized A subject to bounds —5 <, <5,
2 < i < 12, and to the equality constraints &g o = 71 = P72 = ¥73 = 874 = 0.
To this end the NAG routine EO4UCF was used with the starting values for y2,..., 72
generated randomly with the NAG routine GOSDAF. Clearly, a solution of (5.1) is found
whenever the objective function v is successfully brought to its global minimum A = 0
by the minimization routine.

For the continuation procedure we used one of the unknowns 7z, ..., 12 as a con-
tinuation parameter. The particular unknown to be used at each step of the continuation
procedure was determined as follows. Gaussian elimination with column pivoting was
performed in the 10 x 11 Jacobian matrix of the system (5.1) evaluated at the current
value of the solution. The parameter was chosen to be the unknown that was not used
as a pivot, i.e., the unknown whose column would be in the 11th place if the columns
were actually interchanged to carry out the pivoting. In a sense this identifies the un-
known that is (locally in the solution curve) least constrained by (5.1) and that therefore
is (locally) best suited for parametrizing the solutions of the system. Once the index
i9,2 < 9 < 12, of the unknown to be used as a parameter has been determined, we
solved by Newton’s method the 11 x 11 system given by (5.1), along with the equation
Yio = Yo + 8, where ~2 is the value of 7;, at the current solution and § = 0.01 denotes
the increment in the parameter.

The coeflicients of a specific method constructed by following this methodology are
presented later in the papert.

6. Eighth-order methods. Once a method 1, of the class (4.1)~(4.3) with order
r = 7 and s = 13 has been obtained, it is possible to use it so as to have eighth-order
symplectic integration. In fact, it is enough to consider the method [16]

(6.1) T = U} oWz

A step of length h with the new method ¥, consists of a step of length h/2 with the given
order-7 formula followed by a step of length k/2 with the adjoint formula. The method
vy, is symplectic as obtained by concatenating symplectic formulae and obviously has
order > 7. Furthermore, 4, is clearly selfadjoint, so that it has even order. Hence %,
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is an eighth-order method. Note that 1, uses 24 evaluations per step as ¢, and ¢} are
FSAL methods with 13 stages. The ratio number of stages per order is 26/8 versus the
minimum 17/8 suggested by Table 1, but the situation is not bad at all. The approximation
obtained after taking the first half-step 5, ; is also globally accurate of the eighth order;
the first half-step starts from an approximation with (global) error O(h®) and introduces
a local error O(h®), so that the global error after the first half-step is O(h®). Hence
output with global accuracy O(h8) is available after every 12 function evaluations. On
the other hand, having 24 evaluations per step is certainly a drawback if variable step sizes
are used: if a step is rejected, too many evaluations are wasted. Fortunately, symplectic
integration should be used with constant step sizes [4], [5], [7] and so we feel that to find
eighth-order formulae it is better to resort to the technique in (6.1) than to look directly
at methods of the family (4.1)-(4.3).

The parameter in the continuation procedure used to find the seventh-order method
1y, is chosen for the method 1, in (6.1) to have small error constants (see [8]). The y-
truncation error and y-truncation error of an eighth-order RKN method such as ¢, have,
respectively, the forms

(6.2) h® Z &y ;Fo; + O(h')

and

(6.3) h®Y " @9 kFsk + O(h'),
k

where Fg i, and Fy ; are elementary differentials that depend only on the system (1.1)
being integrated and <I>§, j» o i are polynomials in the method coefficients a;j, Vi, Bi,
b;. In (6.2) the sum is extended to the 72 SN-trees of order 9, and in (6.3) the sum is
extended to the 36 SN-trees of order 8 (see Table 1). (Note that in (6.2) and (6.3) the
coefficients that are featured are those of the order-8 method, whereas in (5.1) we deal
with the coefficients of the order-7 method. Also, in (6.2) and (6.3) all SN-trees are
considered, whereas in (5.1) we took only one SN-tree per S-class of equivalence.) We
try to minimize the Euclidean norm N of the vecior with 72 + 36 components ®g ;, ®g .
To this end, at each step of the continuation procedure described in §5 we evaluate N
for the eighth-order method obtained v, by means of (6.1), from the current seventh-
order method 1. The following coeflicients identify the formula v, that, among those
we found, leads to the v, with the lowest N(N = 1.6 x 1075) :

v2 = 0.60715821186110352503,
v3 = 0.96907291059136392378,
74 = —0.10958316365513620399,

s = 0.05604981994113413605,
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Y6 = 1.30886529918631234010,
~7 = —0.11642101198009154794,
s = —0.29931245499473964831,
(6.4) v = —0.16586962790248628655,
Y10 = 1.22007054181677755238,
711 = 0.20549254689579093228,

~v12 = 0.86890893813102759275.

7. Numerical results. Although the numerical experiments presented in this sec-
tion provide information on the advantages and disadvantages of symplectic integrators,
they are limited in scope. More extensive testing is required before definite conclusions
can be put forward.

We consider three explicit, symplectic methods, used with constant step sizes:

(i) S8: order 8, 26 stages, 24 evaluations per step, symplectic RKN formula associ-
ated with (6.4) by means as of (6.1). This has error constant N = 1.6 x 107°.

(ii) Y8: order 8, 15 evaluations per step, symplectic method given in [20, Table 2, col-
umn D}. This is the order-8 method with the lowest value of N among those constructed
in [20] and has N = 4.4 x 1073,

(iii) S4: order 4, five stages, four evaluations per step, symplectic RKN formula
constructed in [7].

As a reference standard (i.e., nonsymplectic) method we consider the following:

(iv) D8: order 8, nine stages, eight evaluations per step, RKN formula by Dormand,
El-Mikkawy, and Prince [9, Table 1]. This has N = 8.3 x 10~". An embedded order-6
method presented in [9] was used to estimate the error in a variable-step implementation.
There are some printing errors in the method coefficients in the original [9], and the
reader should see the corresponding corrigendum.

The values of N given above cannot be directly compared because the work per step
is different for different methods. More informative error coefficient values can be ob-
tained by assuming that a method with ¢ function evaluations per step uses a step size
of gh. If the method is of order p, this multiplies the values of N by ¢?. For S8, Y8, and
D8 the normalized values of the error coefficient turn out to be 1.8 x 10%, 1.1 x 107, and
14, respectively. On raising these values to the power —1/p = —1/8, we obtain a crude
measure of the efficiency of the various methods. The result is 0.16 for S8, 0.13 for Y8,
and 0.71 for D8. The formulae S8 and Y8 are very demanding in function evaluations
and are hence inefficient when compared with the nonsymplectic formula D8. This inef-
ficiency is due to the O(s?) number of degrees of freedom in the RKN tableau that are
used to enforce the symplecticness conditions (1.5).
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Our first test problem was used in [7]. It corresponds to the Newton potential
V(qt,¢?) = —1/|lq|| (Kepler’s problem) with initial condition

1+e
1-¢’

id=1-e =0

Here e is the eccentricity of the orbit, 0 < e < 1, that in the experiments to be reported
is chosen to be e = 0.5. (The value of e does not significantly influence the outcome
of the experiments.) The solution is 27-periodic. Errors are measured in the Euclidean
norm of R*.

Figure 4 corresponds to a final integration time T = 810 x 27 and depicts error at
t = T against number of function evaluations. The following runs are presented:

(i) S8, with step sizes h = 2r/32, 27 /64, 2 /128 (asterisks joined by a solid line).

(if) Y8, with step sizes h = 2w /64, 27w /128, 27 /256 (plus signs joined by a dotted
line).

(iii) S4, with step sizes h = 27 /128, 27 /256, 27 /512, 27 /1024, 27 /2048 (x joined by
a dashed line).

(iv) D8, with absolute error tolerances 10~7,107%,1079,10~10,10-11 1012
(circles joined by dash-dot line).

Clearly, S8 is more efficient than Y8. Yoshida’s method Y8 is more efficient than the
lower-order method S4 when small errors are required. Otherwise, S4 is more efficient
than Y8. However, the nonsymplectic method S8 is clearly more efficient than any of
the symplectic formulae tested.

Figure 5 is similar to Fig. 4, but now the final time T' = 21870 x 27 is longer. The
runs depicted are as follows:

(i) S8, with step sizes h = 2n/32, 27 /64, 27 /128.

(ii) Y8, with step sizes h = 27/128, 27 /256.

(iii) S4, with step sizes h = 2mw/256, 2 /512, 27 /1024, 27t /2048.

(iv) D8, with absolute error tolerances 10-2,10~10,10~11, 10712,

The conclusions as to the relative efficiency of the methods are the same as above.
However, the advantage of D8 is not so marked as before. This is due to the better error
propagation properties of symplectic integrators {7]. In Fig. 6 we have depicted error
against ¢t (measured in periods) for S8 (h = 27/32), Y8 (h = 27/128), S4 (h = 27/256),
and D8 (TOL = 10~). Note that in this figure different methods are working differently;
only the slopes in the different lines should be compared. In the symplectic methods the
error grows linearly with ¢, whereas in the nonsymplectic method D8 the growth is as
t2, as is proved rigorously in [7]. Therefore, as the final integration time T increases, S8
and Y8 improve their efficiency relative to D8. However, the crossover point 7" for which
S8 becomes more efficient than D8 is too large: perhaps T corresponds to millions of
periods of the planet whose motion is being integrated.

From this experiment we conclude that if accurate solutions are needed, even for
long integration times, a high-order standard code may easily be a better choice than
a symplectic algorithm. For high-order RKN integrators too many (O(s?)) degrees of
freedom in the tableau are sacrificed to achieve symplecticness, and this sacrifice makes
the formula very expensive relative to standard RKN methods. This should be compared
with the conclusions in [7], where it is shown that for Kepler’s problem fourth-order
symplectic integrators are more efficient than fourth-order variable-step standard codes.
In [7] the work per step of the fourth-order symplectic algorithm is % of the work per step
of the reference standard fourth-order algorithm and the advantages of symplecticness
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make up for the increased cost per step. Here the work per step in S8 is three times the
work per step in D8.

The second test problem is taken from Herbst and Ablowitz [11]. It originates from
the sine-Gordon equation

(7.1) Uy — Uge + Sinu = 0, 0<z<L=2V2r, t>0.
subject to periodic boundary conditions and to the initial conditions
(7.2) u(z,0) =7 + 0.1cos(2rz /L), ug(z,0) = 0.

Equation (7.1) may be thought of as describing the motion of a family of pendula. At
each value of z,0 < z < L, we have one pendulum. The term u,, provides coupling
between the motions of neighboring pendula. It represents a force that tries to keep a
common value of the angle  for all the pendula. From the initial condition (7.2) we see
that all pendula are initially left near the unstable equilibrium v = #. The pendula in
0<z < L/4or3L/4 <z < L start above the value v = 7 and hence will increase « in
order to approach the stable equilibrium at v = 27. The pendulain L/4 < z < 3L/4
start below the value u = n and will decrease u to approach the stable equilibrium at
u = 0. This causes the term u,, to become important. The effect of the restoring force
is that the pendula are prevented from reaching the lowest © = 27 or u = 0 positions
and, rather, start going upward back to the initial positions, leading to a periodic motion.
The solid curve in Fig. 7 represents u as a function of ¢,0 < t < 16L, for the pendulum
atx=L/2.

As in [11], (7.1) is discretized in space by the standard pseudospectral technique,
with a mesh length Az = L/32. This leads to a Hamiltonian system of the form (1.1),



HIGH-ORDER SYMPLECTIC RUNGE-KUTTA-NYSTROM METHODS 1251

-88,-.D8

w(L/2, 1)

0 20 40 60 80 100 120 140

FiG. 7. u(L/2,t) against t.

where the dependent variables y are the 32 discrete Fourier coefficients of the solution.
This system of ordinary differential equations was integrated with the methods S8, Y8,
S4,and D8on 0 < t < 16L =~ 142.17.

The standard method D8 was run with absolute error tolerances in the range 1072 to
1013, Smaller tolerances were not tried because we felt that they would be too close to
the size of the round-off error associated with the evaluation of the force f (this requires
a couple of discrete Fourier transforms). None of the values of TOL we tried led to a
successful integration, and D8 was not able to come up with the right qualitative behavior
of the solution. The dash-dot line in Fig. 7 corresponds to TOL = 10713, z = L/2; the
computed solution is completely wrong for ¢ > 80. For this value of the tolerance the
D8 code uses 32,810 function evaluations.

On the other hand, the symplectic algorithms S8, Y8, S4 were all able to identify
the right qualitative behavior when run with suitable values of the step length h. With
h = % method S8 cannot faithfully describe the behavior of the solution up to the final
time ¢ = 16L. Halving the value of h to h = £ (27,312 evaluations) leads to a successful
integration (see the curve in Fig. 7). For Y8, h has to be reduced down to h = 5
(34,125 evaluations) and S4 requires A = 35 (18,200 evaluations). Hence S4 was the
most efficient, followed by S8 and Y8. Additional experiments show that if the final
integration time is increased, further reduction of h is necessary to attain the correct
qualitative behavior.

Following a referee’s suggestion, we also integrated (7.1) and (7.2) in time by non-
symplectic methods implemented with constant step sizes. The classical fourth-order
Runge-Kutta method required » = &. This implies 36,400 function evaluations, which
is more than any of the symplectic methods we tried. On the other hand, the order-8 for-
mula of Dormand, El-Mikkawy, and Prince, when implemented with constant step sizes,
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was found to be able to identify the correct qualitative behavior. However, this needed
h = 514- and 72,800 function evaluations, i.e., more than twice as much computational
effort, as the least efficient symplectic formula Y8.
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