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CARRYING AN INVERTED PENDULUM ON A BUMPY ROAD

Mari Paz Calvo and Jesús Maŕıa Sanz-Serna
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Abstract. We study the stabilization by means of random impulses of an
unstable linear oscillator. Almost sure exponential stability is proved for some
combinations of the parameter values.

1. Introduction. We study the stabilization by means of random impulses of the
unstable equilibrium q = 0 of the equation

d2q

dt2
= −ν dq

dt
+
ℓ

g
q, (1)

that describes the motion of a linearized mathematical pendulum with friction. Here
ν > 0 is a friction coefficient, ℓ > 0 the pendulum length, g > 0 the acceleration of
gravity and q the angle between the pendulum rod and the upward vertical axis.

Unstable equilibria of linear or nonlinear, damped or undamped deterministic
oscillators may become stable when the system is subjected to a vibrating external
forcing term (vibrational stabilization in the terminology of [1]). This fact was
first discovered experimentally by Stephenson in 1908 for the case of an inverted
pendulum whose pivot is subjected to fast vertical vibrations and has led to several
useful physical applications, including the Nobel-prize winning Paul’s trap (a brief
historical summary may be seen in [3]).

Stochastic forcing terms have been known since the 1960s [6] to possess similar
stabilizing properties (stabilization by noise); many useful references are provided
in [2].

As in [8], we consider here impulsive external forces of random amplitude that
act on (1) after random waiting times [9]. While the results in [8] apply only on
bounded time-intervals, our analysis, based on [7], shows almost sure exponential
stability on 0 < t <∞ [4].

In order to provide a pictorial description of the problem to be treated, we
may think of an inverted pendulum that is transported on a carriage (Figure 1).
From time to time a bump in the road is encountered and this causes a shock that
instantaneously increments the vertical velocity of the carriage and feeds energy to
its suspension mechanism. The shocks and subsequent oscillations of the carriage
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Figure 1. The inverted pendulum on a carriage that travels on a
bumpy road.

are in turn transferred to the inverted pendulum and we wish to study the long-time
behavior of the resulting random dynamical system.1

Our main result is given in Section 3. Sections 2 and 4 are respectively devoted
to present preliminary material and numerical simulations.

2. The motion of the carriage.

2.1. Equations of motion. The carriage is subjected to vertical shocks that occur
at times t0 = 0 < t1 < · · · < tn < . . . that are assumed to follow a Poisson process
with intensity 1/τ . In the intervals tn < t < tn+1 between consecutive impulses the
(upwards) vertical displacement s(t) of the carriage from its equilibrium position
and the corresponding velocity v(t) obey the differential equations of a damped
harmonic oscillator,

dv

dt
= −γv − ks,

ds

dt
= v, tn < t < tn+1, n = 0, 1, . . . ; (2)

the damping coefficient γ and the spring constant k are both strictly positive. At
the impulse times the displacement remains continuous

s(tn) = s(tn+) = s(tn−), n = 0, 1, . . . , (3)

but the velocity is not defined and possesses jump discontinuities

v(tn+) = v(tn−) + wθn, n = 0, 1, . . . , (4)

where θn is a dimensionless random variable and w a parameter with dimensions
of velocity that governs the strength of the shocks. The variables θn in (4) are
supposed to be mutually independent and independent of the Poisson process and
share a common distribution with

E(θn) = 0, E(θ2n) = 1, E(θ3n) = 0, E(θ4n) <∞. (5)

1However note that a realistic description of the inverted pendulum would require to use the
nonlinear version of (1) with sin q instead of q. It is not possible [8] to obtain almost sure sta-
bility for the nonlinear situation. In the nonlinear case, once the pendulum is far away from the
equilibrium at q = 0, friction is likely to drive it to the equilibrium at the bottom position q = ±π.
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The equations (2)–(4) have to be supplemented with the specification of the
vector (v(0−), s(0)) of (random) initial values, which is assumed to be independent
of the tn and of the θn.

2.2. The associated Markov chain. We begin by considering (cf. [9]) the vari-
ables vn = v(tn−), sn = s(tn), n = 0, 1, . . . , that form a discrete-time, homogeneous
Markov chain whose state space is the plane R2. Our first two results provide the
equations for the evolution of the distributions of this chain and the corresponding
characteristic functions.

Lemma 2.1. Assume that the distributions of (vn, sn) have densities φn(v, s). Then

φn+1(v, s) + τ
∂

∂v
[(−γv − ks)φn+1(v, s)] + τ

∂

∂s
[vφn+1(v, s)] =

∫ ∞

−∞

φn(v − v′, s)µ

(

dv′

w

)

,

where µ is the probability law of the variables θn in (4).

Proof. Denote by ψn(v, s, t) the probability density for the deterministic equation
(2) corresponding to the initial density

ψn(v, s, 0) =

∫ ∞

−∞

φn(v − v′, s)µ

(

dv′

w

)

of the random vector (v(tn+), s(tn)). Then

φn+1(v, s) = τ−1

∫ ∞

0

exp(−t/τ)ψn(v, s, t) dt (6)

so that τφn+1 is the Laplace transform (with dual variable 1/τ) of ψn. The result
is now obtained by taking Laplace transforms in the Liouville equation satisfied by
ψn.

Lemma 2.2. The characteristic function Φn+1(ξ, η) of (vn, sn) can be obtained
from Φn by means of the partial differential equation

Φn+1 + τγξ
∂Φn+1

∂ξ
+ τkξ

∂Φn+1

∂η
− τη

∂Φn+1

∂ξ
= g(wξ)Φn, (7)

where g is the characteristic function of the distribution of the random variables θn

in (4).

Proof. It is sufficient to consider the case where the distributions of (vn, sn) possess
densities. In that case, (7) is a direct consequence of Lemma 1.

Setting Φn = Φn+1 = Φ in (7), yields the (singular) first-order partial differential
equation

Φ + τγξ
∂Φ

∂ξ
+ τkξ

∂Φ

∂η
− τη

∂Φ

∂ξ
= g(wξ)Φ, (8)

whose characteristic system

dξ

dσ
= γξ − η,

dη

dσ
= kξ.

has ξ = 0, η = 0 as an unstable equilibrium. Each point (ξ0, η0) of the plane
of the dual Fourier variables (ξ, η) can be joined to the origin ξ = 0, η = 0 by
means of a unique characteristic curve (ξ(σ), η(σ)) with (ξ(−∞), η(−∞)) = (0, 0),
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(ξ(0), η(0)) = (ξ0, η0) and by integrating along such a characteristic, it is easily seen
that solutions of (8) satisfy

Φ(ξ0, η0) = exp

(

τ−1

∫ 0

−∞

[−1 + g(wξ(σ))] dσ

)

Φ(0, 0).

For a characteristic function, Φ(0, 0) = 1 and we conclude:

Lemma 2.3. The Markov chain (vn, sn) has a unique invariant distribution. The
corresponding characteristic function is the unique solution of the partial differential
equation (8) that satisfies the condition Φ(0, 0) = 1.

The proof of our next result is a simple calculation using differentiation in (8)
and taking into account that, from (5), g′(0) = 0, g′′(0) = −1.

Lemma 2.4. The invariant distribution of the chain (vn, sn) has finite moments
of orders ≤ 4 and

E(vn) = E(sn) = 0,

E(v2
n) =

w2

2γτ
, E(vnsn) = 0, E(s2n) = k−1E(v2

n).

2.3. The carriage stationary process. We leave the discrete-time chain (vn, sn)
and take up the study of the continuous-time process (v(t−), s(t)) (whose paths are
left-continuous with right limits) or, equivalently, its càdlàg modification (v(t+),
s(t)) (where paths are right-continuous with left limits).

Lemma 2.5. For fixed t ≥ 0 and conditional on tn being the last impulse time < t,
the vector (v(t−), s(t)) has the same distribution as the vector (vn+1, sn+1).

Proof. For fixed t ≥ 0, consider the last impulse time tn ≤ t. Due to well-known
properties of the exponential distribution, the spent waiting time t − tn is expo-
nentially distributed with expectation τ and hence, under the hypothesis of Lemma
2.1, the right hand-side of (6) represents the density of (v(t−), s(t)). Therefore this
density coincides with that of (vn+1, sn+1).

From now on we assume that the initial data (v(0−), s(0)) for the equations (2)–
(4) of the carriage motion are drawn from the invariant probability distribution of
the Markov chain. Lemma 2.5 and the lack of memory of the exponential waiting
times imply that, as t varies, (v(t−), s(t)) is a continuous-time, càglàd stationary
process and that, for each fixed value of t, the distribution of the vector (v(t−), s(t))
is that given in Lemma 2.3.

The existence and uniqueness of a stationary solution of the equations of mo-
tion of the carriage, proved here by explicit computations, may alternatively be
established by noting that (v, s) obey a two-dimensional Ornstein-Uhlenbeck pro-
cess driven by a Lévy process (more precisely by the compound Poisson process
w

∑

tn≤t θn). The general theory of such OU processes also shows, [5] Theorem 4.3,

that the stationary solution is ergodic (cf. [9]) and even β-mixing.

2.4. Some auxiliary processes. We now introduce two processes that will be
used in the next section. For t ≥ 0, we denote by J(t) the smallest jumping time
tn such that tn > t and set

S(t) =
1

2ℓ2γ
(v(t−)2 + ks(t)2) − E(v2)

ℓ2
(J(t) − t), (9)
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and

M(t) = −
∑

tn≤t

∆v(tn)2

2ℓ2γ
+
E(v2)

ℓ2
J(t). (10)

Furthermore for t ≥ 0, we consider the σ-algebra Ft generated by the variables
(v(t′−), s(t′)) and J(t′), 0 ≤ t′ ≤ t (note that for this filtration, the waiting time
tn+1 − tn is ‘known’ at tn). The following result holds.

Lemma 2.6. (i) The process S(t) is stationary.
(ii) In the intervals tn < t < tn+1,

dS

dt
= −ℓ−2(v2 − E(v2)). (11)

(iii) At the jumping times tn > 0,

−∆S(tn) = ∆M(tn) = −∆v(tn)2

2ℓ2γ
+
E(v2)

ℓ2
(tn+1 − tn)

=
1

2ℓ2γ

[

−2wθnv(tn−) − w2θ2n + w2 tn+1 − tn
τ

]

. (12)

(iiii) M(t) is a càdlàg process whose paths are constants in the intervals [tn, tn+1).
Furthermore M(t) is a square-integrable martingale with respect to Ft.

Proof. For (i), note that J(t) − t is stationary due to the lack of memory of the
exponential waiting times. Parts (ii) and (iii) are simple computations using the
definitions of S and M along with (2) and Lemma 2.4. (Note that at t0 = 0, the
left limits of S and M and hence ∆S and ∆M are not defined.)

Conditioned to Ft, t < tn, the expectation of 2wθnv(tn−) +w2θ2n is w2 (see (5))
and the expectation of tn+1 − tn equals τ . Therefore the conditional expectation of
the right-most term in (12) vanishes and M is a martingale.

2.5. Scaling. When an inverted pendulum is subjected to a deterministic har-
monic vibration, so that the vertical velocity of the pivot is of the form v(t) =
vmax cos(2πt/τ), stability is only achieved if the period τ is sufficiently small. In
the stochastic analysis to be presented in the next section, it is therefore necessary
to maintain the expected waiting time τ between consecutive impulses as a free
(small) parameter. As τ decreases, the kinetic energy per unit time pumped into
the carriage by the shocks increases and in order to keep a suitable balance between
noise and dissipation it is necessary to vary appropriately the coefficients γ and k
in (2). Based on dimensionality considerations, we set

γ = γ∗τ−1, k = k∗τ−2,

where γ∗ and k∗ are arbitrary but fixed positive constants. In this way the station-
ary process for the carriage is of the form

v(t) = v∗(τ−1t), s(t) = τs∗(τ−1t),

where (v∗, s∗) is the (τ -independent) stationary process for the oscillator

dv∗

dt∗
= −γ∗v∗ − k∗s∗,

ds∗

dt∗
= v∗,

when the impulses arrive with intensity 1. In what follows, we keep the physically
meaningful variables v, s, t, etc. rather than using their mathematically-scaled
counterparts v∗, s∗, t∗, etc.
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3. The motion of the pendulum.

3.1. Equations of motion. The pendulum differential equation reads (cf. (1)):

d2q

dt2
= −ν dq

dt
+ ℓ−1(g + a(t))q, tn < t < tn+1, n = 0, 1, . . . , (13)

where a(t) = dv/dt is the acceleration of the carriage.2 We introduce the angular
velocity p = dq/dt as a new dependent variable and rewrite (13) as a first order
system

dp

dt
= −νp+ ℓ−1(g +

dv

dt
)q,

dq

dt
= p, tn < t < tn+1, n = 0, 1, . . . (14)

At the impulse times the angular velocity, which is not defined, follows the jumps
in v and we have

p(tn+) = p(tn−) + ℓ−1∆v(tn)q(tn−), n = 0, 1, . . . , (15)

with ∆v(tn) = v(tn+) − v(tn−), while the angle remains continuous

q(tn+) = q(tn−), n = 0, 1, . . . (16)

3.2. Main result. For the long-time behavior of the inverted pendulum we have
the following result.

Theorem 3.1. Consider the process defined by (14)–(16), where v is the stationary
process described above and p(0−), q(0) are deterministic initial values and assume
that E(v2)/ℓ > g. Then there exists a constant τ0 (depending on w, γ∗, k∗, ℓ, g
and the distribution of θ1) such that for τ < τ0,

lim sup
t→∞

1

t
log |q(t)| < 0, a.s.

Remark 1. According to Lemma 2.4, the condition E(v2)/ℓ > g is equivalent to
w2/(γτ) = w2/γ∗ > 2ℓg, so that the ratio of the strength w of the impulses to the
square root of the (non-dimensional) friction coefficient γ∗ of the carriage has to
be larger than

√
2ℓg. (

√
2ℓg has the dimensions of a velocity. When a nonlinear

mathematical pendulum of length ℓ is abandoned from the top-most position q = 0,
it reaches the bottom position q = π with velocity

√
2ℓg.) For the physics of the

condition E(v2)/ℓ > g see [3].

Proof of the theorem. The notation O(τm) will be used to refer to a process whose
absolute value possesses a bound of the form τmξ(t), where ξ ≥ 0 is a stationary
integrable process independent of τ . Thus the pivot acceleration a(t), velocity
v(t) and displacement s(t) are respectively O(τ−1), O(1), O(τ). The process S(t)
introduced in (9) is O(τ) and so are the jumps of the martingale M in (10).

As in [7] or [8], the behavior of the paths (p(t), q(t)) is investigated by performing
a sequence of (invertible, symplectic) changes of variables in the spirit of the method
of averaging.

We first use the change

p = p1 + ℓ−1vq1, q = q1,

2We work under the reasonable hypothesis that the mass of the pendulum is so small that the
pendulum does not influence the motion of the carriage.
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(with O(1) coefficients) so as to remove the jump discontinuities present in p (see
(15)). This transforms (14) into the system

dp1

dt
= −νp1 + ℓ−1(g − ℓ−1v2)q1 − ℓ−1vp1 − νℓ−1vq1,

dq1
dt

= p1 + ℓ−1vq1,

where we note the centrifugal acceleration ℓ−1v2 that opposes g (see the discussion
in [3]). Next the ‘oscillatory’ terms νℓ−1vq1, ℓ

−1vp1, ℓ
−1vq1 (with O(1) coefficients)

are removed by means of the successive substitutions3

p1 = p2 − νℓ−1sq2, q1 = q2,

and

p2 =
1

χ(ℓ−1s)
p3, q2 = χ(ℓ−1s)q3, χ(σ) = 1 + σsech(σ),

that lead to a system of the form

dp3

dt
= −νp3 + ℓ−1(g − ℓ−1v2)q3 +O(τ)p3 +O(τ)q3 , (17)

dq3
dt

= p3 +O(τ)p3 +O(τ)q3.

The functions pi(t), qi(t), i = 1, 2, 3, are continuous and their derivatives have jumps
at the impulse times tn; the corresponding differential equations only hold in the
open intervals tn < t < tn+1.

Finally, we take

p3 = p4 + S(t)q4, q3 = q4

where S is the stationary process in (9). In view of (11), this change of variables
essentially has the effect of replacing the process v2 in (17) by its expectation E(v2):

dp4

dt
= −νp4 − Λq4 +O(τ)p4 +O(τ)q4, Λ = −ℓ−1(g − ℓ−1E(v2)) > 0,

dq4
dt

= p4 +O(τ)p4 +O(τ)q4.

At each tn, p4 is discontinuous in view of the continuity of p3 and of the jumps in
S (see (12)) and furthermore, for tn > 0,

∆p4(tn) = −∆S(tn)q4(tn) = ∆M(tn)q4(tn). (18)

The proof is concluded by showing that |q4(t)| decays exponentially to 0 with
probability 1. We simplify the notation by omitting henceforth the subscripts in p4

and q4. The quadratic form (Lyapunov function)

V =
1

2
p2 +

ν

2
pq +

(

ν2

4
+

Λ

2

)

q2

is positive definite and satisfies

dV

dt
= −ν

2
(p2 + Λq2) +BO(τ), tn < t < tn+1,

3The ‘simpler’ change p2 = exp(−ℓ−1s)p3, q2 = exp(ℓ−1s)q3 used in [7] has the drawback
of requiring, in view of the growth of the exponential function, the introduction of additional
hypotheses on the process s. The exact form of χ here is not important provided that χ, χ′ and
1/χ are uniformly bounded and χ(σ) = 1 + σ + O(σ2) near σ = 0.
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where B is a quadratic form in the variables p, q. Therefore, there exist positive
constants κ and C1 and a stationary process ξ ≥ 0 with finite expectation such that

d

dt
logV =

1

V

dV

dt
≤ −κ+ C1τξ(t), tn < t < tn+1,

and integration, taking into account the jumps, leads to

logV (t+) − log V (0+) ≤ −κt+ C1τ

∫ t

0

ξ(σ) dσ +
∑

0<tn≤t

∆log V (tn).

We estimate the jumps ∆ log V (tn) as follows:

∆ logV (tn) ≤ ∆V (tn)

V (tn−)

=
1

V (tn−)

[

∂V

∂p

∣

∣

∣

tn−
∆p(tn) +

1

2
(∆p(tn))2

]

=
q ∂V

∂p

V

∣

∣

∣

tn−
∆M(tn) +

1

2

q(tn)2

V (tn−)
[∆M(tn)]2.

Here we have successively used the concavity of the logarithm, the Taylor expansion
of the quadratic form V , and (18). Thus

t−1 (logV (t+) − logV (0+)) ≤ −κ+ C1τ
1

t

∫ t

0

ξ(σ) dσ

+
1

t

∑

0<tn≤t

q ∂V
∂p

V

∣

∣

∣

tn−
∆M(tn)

+C2τ
1

t

∑

0<tn≤t

[∆M(tn)]2

τ
, (19)

where C2 is a positive constant and we are left with the task of estimating the last
three terms in the right hand-side. By the ergodic theorem, with probability 1,

lim
t→∞

1

t

∫ t

0

ξ(σ) dσ → E(ξ),

and therefore, for t large and τ small, the term with the integral in (19) is < κ/3.
A similar argument applies to the last term. The first sum in (19) is an Ito integral
of a bounded integrand with respect to the martingale M(t)−M(0), and therefore,
as t increases, grows more slowly than (τt)(1/2)+ǫ, for any ǫ > 0. This concludes
the proof.

4. Some simulations. In this section we present some numerical simulations. In
all of them, the pendulum parameters are ν = 5, g = 9.8, ℓ = 0.20, while the
carriage suspension has γ∗ = 2, k∗ = 2. This leaves the waiting time τ between
impulses and the strength of the bumps w as free parameters. The variable θ1
takes the values ±1 with probability 1/2 each. The initial condition is p(0−) = 0,
q(0) = 0.1.4

For each choice of the values of τ and w, we computed numerically 50 samples
of the process for 0 ≤ t ≤ 40. A sample was taken to be ‘stable’ if |q(40)|/|q(0)| <
0.0001. The stars in Figure 2 correspond to those combinations of τ and w for
which all 50 samples were ‘stable’. For fixed w, our Theorem (see Remark 1)

4Since the model is linear the value of q(0) plays no decisive role.
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0 5 10 15
0.005

0.01

0.015

0.02

0.025

0.03

0.035

w

τ

Figure 2. Combinations of τ and w that ensure stabilization. Ex-
perimental results.

ensures stabilization, for τ sufficiently small, provided that w > (2ℓgγ∗)1/2 = 2.8;
such a stabilization is clearly manifest in the figure. On the other hand, if we look
at a fixed value of τ , we see that the stabilization is achieved only on a bounded
range (wmin, wmax): if w is too small the energy pumped into the system is not
enough to achieve the stabilization, if w is too large, the occurrence of a bump that
moves the pendulum away from q = 0 becomes more likely. As τ decreases, the
interval (wmin, wmax) tends to ((2ℓgγ∗)1/2,∞).

In the bound (19), the bumps contribute to the jumps ∆M(tn) that feature in
both summations. The second summation, where all terms being added are positive,
offers a larger threat to stability than the first (in this connection recall from the
analysis that the first grows with t more slowly than the second). Therefore it may
be conjectured that the destabilizing effect of bumps is related to the size of the
second summation in (19). To check this conjecture we have tracked the values of
the relevant quantities and found, after tedious computations,

κ = ν

(

1 − ν√
4Λ + ν2

)

,

C2 =
4

4Λ + ν2
,

E([∆M(tn)]2) =
2 + γ∗

4ℓ4γ∗3
τ2w4.

We then looked for the combinations of τ and w for which in the right hand-side of
(19)

C2τ
1

t

(

t

τ

E([∆M(tn)]2)

τ

)

<
κ

3
.

The boundary of the resulting stability region is depicted in Figure 3; the qualitative
resemblance with Figure 2 is apparent. The values of τ in Figure 3, that caters for a
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0 5 10 15
0.5

1

1.5

2

2.5

3

3.5
x 10

−3

w

τ

Figure 3. Combinations of τ and w that ensure stabilization. Es-
timated values using the proof of the theorem.

worst case scenario, are one order of magnitude smaller than those of the simulations
in Figure 2.
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