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Abstract. In the present paper we show that the strategy proposed in [7]
to avoid the order reduction of Runge-Kutta methods when integrating lin-
ear initial boundary value problems can be extended to also avoid the order
reduction in nonlinear cases. Furthermore, we see that if the Runge-Kutta
method is replaced by an appropriate linearly implicit Runge-Kutta method,
this strategy is interesting not only from a theoretical point of view, but
also provides an efficient procedure to time integrate initial boundary value
problems.

1. Introduction

Let us consider an abstract initial boundary value problem

W(t) = Au®) + f(H),  0<t<T,
(L1) u(0) = uo,
dult) = g(t), 0<t<T,

where A: D(A) € X — X and 8 : D(A) C X — Y are linear operators, X and Y
are Banach spaces, ugp € X, f:[0,T] = X and ¢ :[0,7] — Y. Many evolutionary
partial differential equations of practical interest can be written in this abstract
form [14]. It is well known that when (1.1) is integrated in time with a Runge-
Kutta method of classical order p and stage order ¢ [10], the order of convergence is
min{p, g+0} with 0 < # < 2 [5]. This is the so called order reduction phenomenom.

Different remedies to avoid the order reduction of Runge-Kutta methods
when applied to the time integration of initial boundary value problems have been
proposed in the literature [1, 2, 3, 4, 5, 7, 9, 11, 12, 15, 16, 18]. The aim of the
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present paper is to show that the strategy proposed in [7] to deal with linear
problems can be applied to also avoid the order reduction of linearly implicit
Runge-Kutta methods when time integrating nonlinear problems.

The basic idea of the strategy proposed in [7] is as follows. The solution of
(1.1) is decomposed as u(t) = v(t) + u*(t), where v(t) can be computed directly
in terms of the data and u*(t) is the solution of a suitable initial value problem
for which there is no order reduction. In order to extend this idea to deal with
nonlinear problems, we need to describe more precisely how these functions are
constructed in [7].

For the sake of simplicity, throughout the paper we assume that the problem

{ Za::(),

(1.2) ey

has a unique solution and we denote it by Ey. The technical hypothesis to be
fulfilled by A and 0 are described in Section 2 of [7]. Set D(A) = ker (0) = {z €
D(A)/dz =0} and let us consider the restriction A = fT|D(A) :D(A)CcX - X
which, under these hypothesis, is the infinitesimal generator of a Cp-semigroup in
X. Let us also assume that the solution u of (1.1) belongs to CP*1([0,T], D(A"))
for some 1 <r < p—gq. (Here p and ¢ denote the order and the stage order of the
Runge-Kutta method, respectively). We want to stress that, in practice, this is a
natural requirement since it only demands regularity of v both, in time and space,
but it does not impose any restriction on the boundary values of u. The correcting
term is defined in [7] as

r—1
(1.3) ve(t) =Y ATEOATu(t), 0<t<T.

s=0

Then u*7"(t) = u(t) — v,-(t) is the solution of the initial value problem

(u*r)'(t) = Au*"(t) + f5r(t), 0<t<T,
(1.4) { (0=l
where
r—1 r—1
o)y =ft) =Y ATEAf(t)— A "VE g () =Y AT I D (1)
s=0 j=0

We want to stress that, as shown in [7],

s—1
OAu(t) = gW(t) = > oA fU(t), 1<s<r-1.
7j=0
Therefore, v,.(t) and f*"(t) can be computed in terms of f and g and their deriva-
tives. This will not happen when dealing with nonlinear problems.
Denoting by u" the Runge-Kutta approximation to the solution of (1.4) at
time level t,,, 0 < n < N and setting 4, = u}" 4+ v,(t,) (then 4, is the numerical
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approximation to the solution of (1.1) at time level ¢,,), in [7] the following theorem
is proved:

Theorem 1.1. Let u € CPTL([0,T],D(A")), r = p — q, be the solution of the
initial boundary value problem (1.1). Assume also that f € CP([0,T],X) and g €
CPTY([0,T],Y). Let v, : [0,T] — X be the correcting term defined in (1.3). Then

[u(tn) = @nll = [[u™"(tn) = u " < Cpn Z kit Im

where C' > 0 is a constant and
n

pn = I I rkms A,

m=1
I, (u) = sup u® - PO
) q+1<I<p+1 a1, ([tm—1,tm],D(A7))
Here r(z) is the stability function of the Runge-Kutta method, and the step sizes
km, 0 <m <n-—1, are small enough to ensure that the operators r(km, A) are well
defined in X. The constant C depends on T, A and the Runge-Kutta method but
it is independent of u, f and g.

Observe that 7 = 1 in (1.3) corresponds to the usual correction vq(t) = Eg(t)
mentioned in [16] to convert problem (1.1) into an initial boundary value problem
with homogeneous boundary conditions, which is less affected than (1.1) by the
order reduction [5], [13]. For r = 2,

(1.5) va(t) = Eg(t) + A7 E[g'(t) — 0f(¢)]
and
(1.6) fr2(t) = f(t) — EQf(t) — A" Elg"(t) — 9f'(t)].

In Section 2 we present a nonlinear initial boundary value problem which ex-
hibits order reduction when is time integrated using a third order linearly implicit
Runge-Kutta method. Section 3 is devoted to adapt the strategy of [7] to deal
with nonlinear problems. In Section 4 we show how this strategy can be efficiently
implemented and, finally, in Section 5 numerical results are provided.

2. A nonlinear problem with order reduction

Let us consider the one dimensional forced Burgers’ equation

(2.1) U = Ugy — WUy + f(E,2), -1<z<1, t>0,
subject to homogeneous Dirichlet boundary conditions and with initial data
z2 2% ot
1 —+——-—ifze[-1,0],
to+ o+ 6 g iz [ ]

UO(m): 2 3
8
1+m+?+%—% if 7 € [0, 1].
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The forcing term f is defined in order to have u(t,z) = uo(z)/(1 + t) as the ex-
act solution of the problem. We chose homogeneous boundary conditions since, in
practice, before starting the numerical integration, the original problem is trans-
formed into an initial boundary value problem satisfying homogeneous boundary
conditions.

Let us numerically integrate equation (2.1). For the spatial discretization
we consider a Chebyshev spectral Galerkin method [8] using the basis functions
proposed in [17] and evaluating the nonlinear terms using collocation and Fast
Fourier Transform techniques. The resulting semidiscretized system has the form

(2.2) y' =Ly + N(t,y),

where matrix L stems from the spatial discretization of the diffusive term and
N(t,y) arises from the discretization of nonlinear and source terms. The main
difficulty in dealing with (2.2) is that the use of explicit integrators is usually
inefficient because the system becomes stiffer as the spatial mesh is refined. On
the other hand, if a stiffly accurate integrator is chosen, one has to solve nonlinear
equations that are difficult to handle with, especially in connection with spectral
methods [8]. In order to avoid these difficulties, the linearly implicit Runge-Kutta
methods proposed in [6] combine an L-stable singly diagonally implicit Runge-
Kutta method to treat the linear part with and explicit Runge-Kutta scheme
for the nonlinear terms, in such a way that the overall method has good stability
properties for spectral discretizations of advection-reaction-diffusion equations (see
[6] for more details). These methods have Butcher tableaux

clA| A
with A = (a;;)tL,, A = (4i;); jo1, € = [0,¢2, .-, cop1]T and b7 = [0,ba, ..., byy1].
Matrix A is lower triangular with constant diagonal elements and has null first

column, while A is strictly lower triangular. The equations to advance a step of
length & in the integration of (2.2) from ¢, to t,,+1 = t,, + k take the form

Y, = Yn,
A i—1
Y, = y.+k ZaijLYj + Z&i,jN(tn + k‘Cj,Yj) ,2<1<s+1,
j=2 j=1
s+1 s+1
Yne1i = Ynt+k (Z b;LY; + Z bZN(tn + ke;, Yz)> R
=2 =2

where Y; denote the internal stages. In our numerical experiments we use the
linearly implicit Runge-Kutta method with classical order p = 3, stage order ¢ =1
and s + 1 = 4 stages proposed in [6]. Due to the special structure of matrices .4
and A, the method requires 4 evaluations of the nonlinear term per step, 3 matrix-
vector multiplications per step and 3 linear systems with the same matrix to be
solved at each step.
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FI1GURE 1. Error at 7' = 10 against CPU time for Burgers’ equation

In order to observe the errors due to the time integrator, we fix the number
of degrees of freedom for the spatial discretization and we consider time steps
k = 0.4,0.2,.... In Figure 1 we have plotted error at 7" = 10 (measured in the
L? norm) against CPU time for two different values of the number of degrees
of freedom M = 80 and M = 20. Only data for which the error due to the
spatial discretization is smaller than the error of the time integration have been
plotted. We observe that the time integrator behaves as a second order method
as corresponds to the slope —2 of both lines. Then, the order reduction is present
because the classical order of the method is 3. We want to stress that although the
stage order of the method is only 1, the errors shown in Figure 1 exhibit second
order. This is due to the homogeneous boundary conditions satisfied by the exact
solution of (2.1), which imply that the first correction (1.3) with r = 1 is already
done (see [5], [13] for details).

3. How to avoid the order reduction in the nonlinear case

In this section we show how the strategy of [7] can be adapted to deal with certain
families of nonlinear problems, including Burgers’ equation.
Let us now consider an abstract initial boundary value problem of the form
W(t) = Au(t) + Ru(®) + f(t), 0<t<T,
(3.1) u(0) = uo,
Au(t) = g(t), 0<t<T,

with A and 8 as in (1.1) and R : D(R) C X — X a nonlinear operator satisfying
D(A) C D(R). For instance, Burgers’ equation can be written in this abstract
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format as follows: X = L?([-1,1]), Y = R x R, D(4) = W??([-1,1]) = {p €
X/¢" e X}, Ap=¢", R(p) = oy’ and 8¢ = [p(~1),(1)]", ¢ € D(A). In this
example D(A4) = W22([—1,1)) 1 WeA(—=11]) = {p € W22(-1,1)) / p(~1) =
(1) = 0} and for & = [&,&1])7 € Y, E¢ is the mapping sending = € [—1,1] to
& + (&1 — &)/2)(x + 1). Notice that in practice, R collects spatial lower order
derivatives and nonlinear terms.

According to (1.3), if w: [0,7] — X is a solution of (3.1), let us define
vy(t) = Edu(t) + A~ EdAu(t)
Eou(t) + AT EO[U (t) — R(u(t)) — f(t)]-
Then u*2(t) = u(t) — v2(t) is the solution of the initial value problem

{ (w?)'(t) = Au*2(t) + *2(t), 0<t<T,

(3_2) u*’2(0) = u +A—1E8f(0)a

for an appropriate f*2(t).

Let us now assume that Ou = 0 and OR(u) = 0. This includes initial boundary
value problems subject to either Dirichlet or Neumann homogeneous boundary
conditions and with nonlinearities including reaction terms of the form R(u) with
R a smooth real function satisfying R(0) = 0, or other nonlinear terms such as
R(u) = (u - V)u appearing in Navier-Stokes equations or Burgers’ type equations.
Under these assumptions,

vat) = —A~LEOf (1)

and
H(1)
(3.3) fo2(t) = R(u(t)) + f(t) — [BOf(t) — A" EOf'(t)] .

Notice that vo(t) and H (t) are computable in terms of the data but the nonlinear
term depends on the solution u(t) of the original problem (3.1). This is the main
difference with respect to the linear case, where f*2(t) was computable in terms
of f and g and their derivatives (see (1.6)).

From the theoretical point of view this is not a serious drawback since u(t) =
u*2(t) + va(t) and vs(t) is computable in terms of f(¢). However, the computation
of vy(t) during the time integration requires the solution of several additional
stationary problems per step, which can be expensive in practice. In Section 4
we propose an alternative way of providing approximations to « and u*?2 by time
integrating (3.1) and (3.2) simultaneously using a linearly implicit Runge-Kutta
method as those proposed in [6].

4. An efficient implementation of this strategy

For the time integration of (3.2), let us consider a linearly implicit Runge-Kutta
method with Butcher tableaux (2.3). The equations to time integrate (3.2) from
t =0 to ty = Nk take the form:
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Forn=0,1,2,...,N — 1,

*2
U, =

U*’2 _

(3

*,2

unJrl -

tht1 =

u

*,2
n

A
WAk ai AU

u
j=2
i—1
kY aij [Ru(tn + cik)) + f(tn + cjk) = H(ta +¢;k)], 2<i<s+1,
j=1
s+1
w kY b [AU;"2 + R(u(tn + cik)) + f(tn + cik) — H(tn + c,»k)] :
=2
tn +k,

with tg = 0 and u3’2 = up — v2(0). Then, the approximation to the solution of
(3.1) at ty is given by

(4.1)

iy =ul — AT Edf(ty).

However, the nonlinear terms are not known because they depend on the exact
solution of (3.1). What we propose in order to overcome this difficulty is to time
integrate (3.1) and (3.2) simultaneously. More precisely,

Forn=0,1,2,...,N — 1,

Uy
Uy

U;

Un+1

*
un+1

tn+1

un)

*

Uy y

Uy + kzl:aijzz[Uj

=2

i—1
kY ai [R(U) + f(ta +¢;k)], 2<i<s+1,
j=1

i
U,:L + k Z aijAU;‘

j=2
i—1
kY aij [R(U))) + f(ta + ¢jk) — H(tn + k)], 2<i<s+1,
j=1
s+1 _
Up + kZ bl I:AUZ + R(UZ) + f(tn + Clk)] 5
=2
s+1
uh + kY b [AUS + R(U;) + f(ta + cik) — H(t, + cik)],
=2

tn, + k,
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with to = 0 and ug = up — v2(0). Now, the approximation to the solution of (3.1)
at ty is given by

(4.2) an =uly — ATVEDf(tn).

In this way, for 1 < j < s+ 1, the term R(u(t, + c;k)) is approximated by R(U;),
being U;, 1 < j < s+ 1, the internal stages of the linearly implicit Runge-Kutta
method when applied to the original problem (3.1). Notice that the additional
computational cost of this implementation, compared with the standard implemen-
tation of the linearly implicit method applied to (3.1), is just the computational
cost of the solution of 3 linear systems per step, but with the same matrix used in
the standard procedure. It is also necessary to evaluate the function H(t) at three
different time levels per step, but this can be efficiently done in parallel at the be-
ginning of each step. Furthermore, although each evaluation of H(t) requires the
solution of 3 stationary problems, in the one dimensional case the computational
cost of this task is almost negligible since (1.2) can be solved exactly.

On the other hand, in the implementation above, the term R(u(t, + c;k)) is
approximated by R(U;), 1 < j < s+1, which is only a second order approximation
since the stage order of the linearly implicit Runge-Kutta method is 1. However,
the following result holds:

Theorem 4.1. Let 4y and ﬁN be the numerical approzimations to u(tn) defined by
(4.1) and (4.2) respectively. If ||y —u(tn)|| = O(K?), then ||un —u(ty)|| = O(k?).

Proof. We will prove that ||iny — an|| = O(k3). First we observe that substract-
ing (4.2) from (4.1) it is enough to prove that |ju}y’ — ui|| = O(k®). To this
end, we set F*%(t,,) = {f*?(tn + clk)}j;l, where f*2(t) is defined by (3.3) and
F*(tn) = {R(U;) + f(tn + cik) — H(t, + clk:)}f;l, where Uy, ..., Usyq are the in-
ternal stages of the linearly implicit Runge-Kutta method when applied to (3.1)
to advance from t,, to t,+1. We also set U*? = {U*}s2] and U* = {UF}5F]. Ac-
cording to (3.3), F*2(t,) — F*(t,) = {R(u(t, + c;ik)) — R(U;)}:1], being u(t) the
exact solution of (3.1). Since the stage order of the linearly implicit Runge-Kutta
method is 1,
U(tn + Czk) -U; = kzai(tn) + O(kg)

and then if R is smooth enough

(4.3) F*2(t,) — F*(t,) = k*a*(t,) + O(k*).

The vectors collecting the internal stages U*2 and U* satisfy

(4.4) U*? = (e @ DNuly? + k(A® AU + k(Ao 1) F*2(t,)
and

(4.5) U* = (e Dl + k(A® A)U* + k(A® I)F*(t,),

respectively. Here 4 and A denote the matrices of the Runge-Kutta tableaux in
(2.3), e = [1,...,1]T € R**! and I stands for the identity matrix. On the other
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hand, the approximations to the solution at ¢,,4; satisfy

(4.6) u? = u? + k(b @ U2 + k(b" © I)F*2(t,)
and
(4.7) uhyy =ul +k(bT @ AU + k(b” @ I)F*(ty,),

respectively, where b” are the weights of the linearly implicit Runge-Kutta method
(2.3). Substracting (4.5) from (4.4) and using (4.3) we get
U2 —U* = (e )[uf? —ul] + k(A® A)[U? -U*] + k(fi@ D[k*a*(t,) +O(k*)],
which leads to

U*? —U* = (I-k(A®A) (e Du? —u]
(4.8) + I —k(A® A) (Ao Da*(t,) + OkY).
On the other hand, substracting (4.7) from (4.6) and using again (4.3) we get
upty = by =y —ul) + k(b © AU — U]+ k(bT @ I)[k*a* (t,) + O(k®)],
which after using (4.8) and some manipulations leads to

u:HQ_l —uby = ([[+kMTRA) I -kA®A4) ex])) [uy? —ul)
+ E(bT @ Da*(t,) + O(k*).

Now, the variation of constants formula applied to the previous equality shows
that

2 _ +1p %2
Uty ~ Uy = (r(BA)" [ug” — ug]

n
+ Ky (r(kA)" (BT @ Da*(t;) + O(k)],
j=0
where r(kA) = I+k (b” ® A) (I —k(A® A))~"(e®I). Notice that r(z) is nothing
but the stability function of the implicit part of the linearly implicit Runge-Kutta
method (2.3). As long as u}”® = u§, and using summation by parts, we get

u? —uh,, = kRa(kA)(bT @ I)a*(0)
+ K Xn: R j(kA) (" @ ) [a* (t;) — a*(tj-1)]
+ O,

J

with R;(kA) = Z(r(kA))l for 0 < j < n. Since [a*(¢;) —a*(tj—1)] = O(k), it is
1=0

clear that for 0 <n < N —1,

)2 _
||U;+1 - ’U’:LJrlH = 0(k3):

as we wanted to prove. O
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5. Numerical results

In order to illustrate the performance of the strategy described in the previous
section, we consider again the forced Burgers’ equation (2.1) with the same initial
data and forcing term as in Section 2. We repeat the experiment of Section 2 but
with the new implementation of the time integrator. In Figure 2 we have plotted

-2

10k

-8 L :,A'\ L L
103 -1 0 1 2 3

10 10 10

FIGURE 2. Error at T = 10 against CPU when integrating (3.2)
for Burgers’ equation

error at T = 10 (measured in the L? norm) against CPU time for M = 80 and
M = 20 degrees of freedom and step-sizes k = 0.4,0.2,...,0.003125 for M = 80
and £ = 04,0.2,...,0.025 for M = 20. Only data for which the error due to the
spatial discretization is smaller than the error caused by the time integrator have
been plotted. We observe that the time integrator now behaves as a third order
method as corresponds to the slope —3 of both lines. Then, the order reduction
has been avoided.

In Figure 3 we have plotted the results obtained using both procedures, in
order to see which of them is the most efficient. We use diamonds joined by a solid
line for the data obtained with the implementation without order reduction and
circles joined by a dashed line for the data generated with the linearly implicit
method applied to Burgers’ equation. We see that independently of the number of
degrees of freedom used in the spatial discretization, the new implementation of
the time integrator is more efficient than the standard integration of the original
problem. We observe not only the third order of the new implementation, as ex-
pected, but we also observe that the cheapest way to get errors under a prescribed
tolerance always corresponds to the time integration using the new procedure.
We conclude that the strategy proposed in [7] to avoid the order reduction of
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F1Gure 3. Efficiency diagram comparing both procedures

Runge-Kutta methods and adapted in the present paper to also deal with nonlin-
ear problems is interesting not only from a theoretical point of view but also as an
efficient procedure to time integrate one dimensional nonlinear initial boundary
value problems.
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